Напишите уравнение диссоциации сульфата меди

Напишите уравнения электролитической диссоциации: а) нитрата меди(ii); б) соляной кислоты; в) сульфата алюминия; г) гидроксида бария; д) сульфата цинка

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,299
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,247
  • разное 16,834

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Схема диссоциации сульфата меди

Скачать
презентациюСхема электролиза сульфата меди >>

Схема диссоциации сульфата меди. + -. — +. — +. H2O. CuSO4=Cu2+ + SO42-. SO42-. Cu2+. Cu2+. SO42-. SO42-. Cu2+. Cu2+.

Слайд 4 из презентации «Процесс электролитической диссоциации». Размер архива с презентацией 73 КБ.

Химия 11 класс

«Производные карбоновых кислот» — Сложные эфиры минеральных кислот. Метанамид. Метановая (муравьиная) кислота. Амиды. Гидролиз сложных эфиров. Эфиры серной кислоты. Уходящий нуклеофил. Продукты замещения карбоновых кислот. Кетон. Химические свойства сложных эфиров и амидов. Сложные эфиры. Кислотный гидролиз. Гидролиз амидов. Функциональные производные карбоновых кислот. Этерификация. Обратимый процесс. Эфиры фосфорной кислоты. Катализатор.

«Способы защиты от коррозии металлов» — Металлы (например, алюминий) при коррозии покрываются плотной, оксидной пленкой. Нанесение защитных покрытий. Коррозия металлов. Электрохимические методы защиты. Способы защиты от коррозии. Значительно усиливает коррозию повышение температуры. Электрохимическая коррозия. Гидроксид железа(III) очень неустойчив. Рассмотрим разрушение железного образца в присутствии примеси олова. В результате коррозии железо ржавеет.

«Процесс электролитической диссоциации» — Масса вещества. Критерии оценивания. Майкл Фарадей. Масса, выделившегося вещества. Электрический ток. Схема диссоциации сульфата меди. Интегрированный урок по химии и физике. Применение электролиза. Схема электролиза сульфата меди. Распад молекул электролитов. Электролитическая диссоциация. Исследование электропроводности жидкостей.

«Внеклассное мероприятие по химии» — Получение газов — аппарат Киппа. Что готовили во Франции из оливкового масла третьего отжима и соды. Метан. Что можно доказать, используя данное оборудование. Этот элемент называют королем живой природы. Получение газов. Формулы. Выдающийся естествоиспытатель древности Плиний Старший. Петр Великий говорил: “Я предчувствую, что Россияне, когда–нибудь, а. Придумайте четверостишия. Вам не обойтись без темно-синих кристаллов.

«Роль химии в жизни общества» — Парфюмерная промышленность. Производство бумаги. Дела человеческие. Полимеры в медицине. Всемогущая химия. Химия служит человеку. Бытовая химия. Производство стекла. Производство строительных материалов. Роль химии в жизни общества. Развитие многих отраслей промышленности. Фармацевтическая промышленность. Производство металла.

«Химия и производство» — Химический состав стекла. Химический состав. Физические свойства стекла. Важнейшие составляющие химического производства. Применение. Основные функции воды в химической промышленности. Химическая промышленность в повседневной жизни. Химическая промышленность и химическая технология. Некоторые химические производства. Чугун. Сокращение расхода воды. Цемент. Крекинг. Научные принципы организации производств.

Всего в теме «Химия 11 класс» 35 презентаций

Расчеты массы веществ и составление уравнений электродных процессов при электролизе растворов электролитов

Расчет массы гидроксида калия, образовавшегося при электролизе раствора фосфата калия

Задача 199.
Сколько граммов KOH образуется у катода при электролизе раствора K3PO4 если на аноде выделилось 11,2 л кислорода?
Решение:
Уравнение диссоциации соли:

Стандартный электродный потенциал системы К + + 1ē = К 0 (-2,92 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода, а ионы К+, приходящие к катоду, будут накапливаться в прилегающей к нему зоне (катодное пространство):

На аноде будет происходить электрохимическое окисление ионов ОН — , приводящее к выделению кислорода:

поскольку отвечающий этой системе стандартный электродный потенциал (+0,54 В) значительно ниже, чем стандартный электродный потенциал (+1,23 В), характеризующий систему: 2Н2О — 4ē = О2↑ + 4Н + .

Уравнения электродных процессов:

К(-): 2|(–)2H2O + 2ē → H2↑ + 2OH — (в растворе: K⁺, 2OH⁻);
А(+): 1|(+)2H₂O – 4ē → 4H + + O2↑ (В растворе: 4H + , PO4 3- ).

Сложив уравнения электродных процессов на катоде и аноде, получим полное ионно-молекулярное уравнение электролиза соли К3РО4:

После приведения равенства получим молекулярное уравнение электролиза:

С учетом того, что диссоциация соли фосфата калия в растворе протекает полностью, запишем молекулярное уравнение реакции её электролиза, получим:

Из уравнения электролиза К3РО4 вытекает, что на 1 моль О2 образуется 3 моль КОН, т.е. n(O2) = 3n(KOH).

Находим количество выделившегося кислорода, получим:

n(KOH) = 3n(O2) = 0,5 • 3 = 1,5 моль.

m(KOH) = n(KOH)•M(KOH) = 1,5 • 56 = 84 г.

Ответ: m(KOH) = 84 г.

Расчет количество вещества меди, перешедшего в раствор с анода при электролизе сульфата меди (II)

Задача 200.
При электролизе водного раствора сульфата меди (II) с медным анодом масса катода увеличилась на 3,2 г. Какое количество вещества меди перешло в раствор с анода?
Ответ: 0,05 моль.
Решение:
Уравнение диссоциации сульфата меди:

Стандартный электродный потенциал системы: Cu 2+ + 2ē ⇔ Cu 0 (+0,34 В) значительно положительнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление ионов меди: Cu 2+ + 2ē ⇔ Cu 0 .
На аноде будет происходить электрохимическое окисление меди – материала анода, поскольку, отвечающий системе:
Cu 0 — 2ē ⇔ Cu 2+ (+0,34 В) значительно ниже 2SO4 2- + 2ē ⇔ S2O8 2- (+2,01 В). Ионы SO4 2- , движущиеся к аноду, будут накапливаться в анодном пространстве. Таким образом, на аноде будет происходить растворение меди — материал анода, а на катоде – отложение чистой меди.
Уравнения электродных процессов:

А(+): Cu 0 — 2ē ⇔ Cu 2+
К(-): Cu 2+ + 2ē ⇔ Cu 0

Суммарное уравнение катодного и анодного процессов будет иметь вид:

2Cu 0 + Cu 2+ = Cu 2+ + Cu 0
анод катод

Таким образом, при электролизе CuSO4 на катоде будет наблюдаться выделение чистой меди, на аноде — растворение медного электрода (медь анода будет переходить в раствор в виде ионов Cu 2+ ). Значит, nкатод(Cu) = nанод(Cu)

nкатод(Cu) = nанод(Cu) = m(Cu)/M(Cu) = 3,2/64 = 0,05 моль.

Ответ: 0б5 моль.

Расчет массы металла и объема газа, выделившихся при электролизе раствора соли

Задача 201.
Через растворы NiSO4 и Pb(NO3)2 пропускали одно и то же количество электричества. На одном из катодов выделилось 25,9 г свинца. Сколько граммов никеля выделилось на другом катоде? Какой газ и в каком объеме, измеренном при нормальных условиях, выделился на каждом из электродов?
Решение:
М(Ni) = 58,6934 г/моль;
M(Pb) = 207,2 г/моль;
m(Pb) = 25,9 г;
m(Ni) = ?
V(H2) = ?
V(O2) = ?
Для никеля и свинца, как металлов со средней химической активностью, расположенных в ряду активности после алюминия, на катоде происходят одновременно две
реакции – образование водорода и выделение металла.
Так как NiSO4 и Pb(NO3)2 являются кислородсодержащими кислотами, то на аноде будет происходить окисление воды с выделением кислорода.
Схемы электродных процессов электролиза водных растворов солей NiSO4 и Pb(NO3)2 выглядят следующим образом:

Суммарное ионно-молекулярное уравнение:

После приведения членов, получим:

Суммарное молекулярное уравнение:

Суммарное ионно-молекулярное уравнение:

После приведения членов, получим:

Суммарное молекулярное уравнение:

Из суммарных уравнений процессов электролизов солей вытекает, что при электролизе водных растворов NiSO4 и Pb(NO3)2 при пропускании через их растворы одного и того же количества электричества, на катодах будет выделяется метал и водород, на анодах — кислород, в равных количествах.

n(Pb) = n(Ni) = n(H2) = n(O2)
n(Pb) = m(Pb)/M(Pb) = 25,9/207,2 = 0,125 моль.

m(Ni) = n(Ni) • M(Ni) = 0,125 • 58,6934 = 7,3 г.
V(H2) = n(H2) • Vm = 0,125 • 22,4 = 2,8 л.
V(O2) = V(H2) = 2,8 л.

Ответ: m(Ni) = 7,3 г; V(H2) = 2,8 л; V(O2) = 2,8 л.

Электролиз раствора гидроксида натрия

Задача 202.
При электролизе водного раствора NaOH, через Pt-электроды пропустили ток, силой 3 А. Напишите уравнения электродных реакций. Рассчитайте объемы газов, выделившихся на электродах за 3 часа (н. у.).
Решение:
Электродные процессы:

на катоде: 2|2Н2О + 2ē = Н2↑ + 2ОН − ;
на аноде: 1|2Н2О — 4ē = О2↑ + 4Н + .

Суммарное уравнение процесса получим, умножив уравнение на катоде на два и, сложив его с анодным уравнением:

6Н2О = 2Н2↑ + 4ОН − + О2↑ + 4Н + .
у катода у анода

При вычислении объёмов выделившихся газов представим уравнение Фарадея в следующем виде:

Здесь V – объём выделившегося газа, л;
m(B) – масса выделившегося вещества, г;
VЭ – эквивалентный объём газа, л/моль;
МЭ(В) – масса эквивалента вещества, г/моль;
I – сила тока, А;
t – время, с;
F – число Фарадея, 96500 Кл/моль.

V(H2) = 11,2•3•10800/96500 = 3,76 л;
V(О2) = 5,6•3•10800/96500 = 1,88 л.

Электролиз раствора сульфата цинка

Задача 203.
Какие реакции протекают на электродах при электролизе раствора сульфата цинка: а) с графитовым анодом; б) с цинковым анодом.
Решение:
а) электролиз раствора сульфата цинка с графитовым анодом

1-й вариант электролиза раствора сульфата цинка с графитовым анодом

Для цинка, как металла со средней химической активностью, расположенного в ряду активности после алюминия, на катоде происходят одновременно две
реакции – образование водорода и выделение металла.
Так как ZnSO4 является кислородсодержащей кислотой, то на аноде будет происходить окисление воды с выделением кислорода.
Схемы электродных процессов электролиза раствора ZnSO4 выглядят следующим образом:

ZnSO4 = Zn 2+ + SO4 2- (диссоциация соли)
К(-): 1|Zn 2+ + 2ē = Zn 0
1|2Н2О + 2ē = Н2↑ + 2ОН —
А(+): 1|2Н2О — 4ē = О2↑ + 4Н +

Суммарное ионно-молекулярное уравнение:

После приведения членов, получим:

Суммарное молекулярное уравнение:

Таким образом, при электролизе раствора сульфата цинка с угольным электродом на катоде будет наблюдаться выделение газообразного водорода и металлического цинка, а на аноде будет наблюдаться выделение газообразного кислорода.

Выводы:
1) В случае электролиза водного раствора ZnSO4 одновременно протекают два процесса:

2-й вариант электролиза раствора сульфата цинка с графитовым анодом

Рассмотрим альтернативное протекание электролиза водного раствора ZnSO4.
Замечено, что в растворе есть гидроксид-ионы (ОН — ), но в предыдущей записи электродных процессов для них нет противоионов. Следовательно, нужно добавить в раствор (Zn 2+ ). Так как удвоилось количество ионов цинка, необходимо удвоить и количество сульфат-ионов:

К(-): Zn 2+ + 2ē = Zn 0
2О + 2ē = Н2↑ + 2ОН —
Zn 2+ (в растворе)
А(+): 2Н2О — 4ē = О2↑ + 4Н +
2SO4 2- (в растворе)

Складываем левые и правые части катодных и анодных процессов получим суммарное ионно-молекулярное уравнение:

Zn 2+ + 2H2O + Zn 2+ + + 2H2O + 2SO4 2- = Zn 0 + Zn 2+ + Н2↑ + + 2ОН — + О2↑ + 2SO4 2- + 4Н + .

Соединяем катионы и анионы и записываем итоговое уравнение электролиза, получим:

Выводы:
1) В случае электролиза водного раствора ZnSO4 одновременно протекают два процесса:

Таким образом, при электролизе раствора сульфата цинка с угольным электродом на катоде будет наблюдаться выделение газообразного водорода, металлического цинка и гидроксида цинка, а на аноде будет наблюдаться выделение газообразного кислорода.

б) электролиз раствора сульфата цинка с цинковым анодом

На катоде так же как и при электролизе раствора ZnSO4 с угольным электродом происходят одновременно две реакции – образование водорода и выделение металла, а ионы цинка Zn2+, приходящие к катоду, будут накапливаться в прилегающей к нему части раствора (катодное пространство).
На аноде будет происходить электрохимическое окисление цинка – материала анода, поскольку, отвечающий системе: Zn 0 + 2ē ⇔ Zn 2+ (-0,76 В) значительно ниже системы:
S2O8 2- +2ē =2SO4 2- (+2,01 В).
Сульфат-ионы, движущиеся к аноду, будут накапливаться в анодном пространстве.
Таким образом, на аноде будет происходить растворение цинка — материал анода, а на катоде – выделение газообразного водорода и малорастворимого соединения Zn(OH)2 [Zn 2+ + 2OH — = Zn(OH)2].
Уравнения электродных процессов:

К(-): 1|Zn 2+ + 2ē = Zn 0
1|2Н2О + 2ē = Н2↑ + 2ОН —
A(+): 2|Zn 0 — 2ē = Zn 2+

Суммарное ионно-молекулярное уравнение:

Zn 2+ + 2H2O + 2Zn 0 = Zn 0 + Н2↑ + 2OH — + Zn 2+
у катода у анода

После приведения равенства, получим:

2H2O + Zn 0 = Н2↑ + 2OH — + Zn 2+ (ионно-молекулярная форма);
2H2O + Zn 0 = Н2↑ + Zn(ОН2 (молекулярная форма).

Таким образом, при электролизе ZnSO4 с цинковым анодом на катоде будет наблюдаться выделение газообразного водорода и в осадок выпадает гидроксид цинка, на аноде будет происходить растворение материала анода (цинк).


источники:

http://5klass.net/khimija-11-klass/Protsess-elektroliticheskoj-dissotsiatsii/004-Skhema-dissotsiatsii-sulfata-medi.html

http://buzani.ru/zadachi/obshchaya-khimiya/1838-sostavlenie-uravnenij-elektrodnykh-protsessov-zadachi-199-203