Напишите уравнение плоской бегущей монохроматической волны

УРАВНЕНИЕ ПЛОСКОЙ МОНОХРОМАТИЧЕСКОЙ ВОЛНЫ

Пусть в точке О, которую примем за начало координат, находится источник колебаний, колеблющийся по закону x = cos wt, где x — мгновенное значение колеблющейся величины, А — амплитуда, w — циклическая частота. Рассмотрим процесс распространения колебаний, например, вдоль координатной оси Оx. Обозначим скорость распространения волны, т.е. скорость передвижения фронта волны, через u. Очевидно, что колебания в точке с координатой х начинаются через промежуток времени t = х/u, который необходим, чтобы колебания достигли этой точки. Тогда уравнение колебаний в данной точке описываются уравнением x = cos w(t – t) = cos w(tх/u). Обычно это уравнение записывают в ином виде. Для этого преобразуем аргумент косинуса: w(tх/u) = = wtхw/u = wt – 2pх/(uT), так как w = 2p/T, где Т — период колебаний. Расстояние, на которое распространяется волна за период колебания, называется длиной волны. Обозначим её через l. Тогда uT = l. С учётом этого запишем:

(1)

Уравнение (1) называется уравнением плоской монохроматической волны. В этом уравнении A и w ¾ амплитуда и циклическая частота волны, равная амплитуде и циклической частоте колебаний, происходящих в разных точках волны; ¾ фаза волны.

Звук представляет собой колебания воздуха или другой упругой среды, воспринимаемые нашими органами слуха. Звуковые колебания, воспринимаемые человеческим ухом, имеют частоты, лежащие в пределах от 20 до 20000 Гц. Колебания с частотами меньше 20 Гц называются инфразвуковыми, а больше 20 кГц — ультразвуковыми.

1. Характеристики звука. Звук у нас ассоциируется с его слуховым восприятием, с ощущениями, которые возникают в сознании человека. В связи с этим выделяют три его основные характеристики: высота, тембр и громкость звука.

а) Высота и тембр звука. Физической величиной, характеризующей высоту звука, является частота колебаний звуковой волны. Чем меньше частота, тем ниже звук, а чем больше частота, тем выше звук. Звук, издаваемый при полёте

жука, имеет частоту несколько десятков герц, тогда как писк комара — частоту, приближающуюся к 20000 Гц. Когда мы слышим музыкальный звук, то кроме высоты и громкости, мы воспринимаем его тембр. Звучание одной и той же ноты (следовательно, звучание одинаковой частоты) на скрипке и трубе чётко различаются на слух. Тембр звука связан с физически измеримыми величинами. Он определяется наличием обертонов (удвоенных, утроенных и т.д. частот основной частоты), их числом и амплитудами. У различных музыкальных инструментов число обертонов и их амплитуды оказываются различными. Именно это придаёт звуку каждого инструмента определённый тембр. Тембровая окраска звука определяется распределением интенсивностей обертонов, как, например, изображено на рис. 2. Другой тип звука — шум, который имеет место, например, при ударе двух камней друг о друга, ударе по всем клавишам рояля и т.д. Шум характеризуется большим числом частот, которые слабо связаны или не связаны друг с другом. Спектр шума представляет собой непрерывный набор частот и отдельные линии не выделяются.

0 n
0 n
б)
I
а)
I

Рис. 2

б) Громкость звука. Громкость звука связана с физически измеряемой величиной — интенсивностью волны. Интенсивность равна энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно к направлению её распространения. Интенсивность звуковых волн очень низка. Она изменяется от 10 –12 (порог слышимости) до 10 Вт/м 2 (болевые ощущения). Так, энергия рёва большой толпы футбольных болельщиков, приветствующих гол, приблизительно равна внутренней энергии чашки кофе при температуре

Человеческое ухо воспринимает невероятно широкий диапазон интенсивностей, крайние его значения различаются в 10 13 раз. Установлено, что величина, которую мы воспринимаем как громкость, не прямо пропорциональна интенсивности. Уровень громкости L вычисляется через интенсивность данного звука I по формуле

(2)

где за I0 принимается величина порога слышимости, причём используется десятичный логарифм. Уровень громкости измеряется в белах (Б). Однако удобнее оказалось использовать величину в 10 раз меньшую — децибел. Значение в этом случае записывается

(3)

Для примера приведём сравнительную таблицу уровней громкости (табл. 1).

1. Электромагнитные волны являются одним из наиболее важных типов волн, которые широко используются на практике. В отличие от механических волн для их распространения не нужно упругой среды. Они могут распространяться и в вакууме. Два фундаментальных закона природы лежат в основе существования электромагнитных волн: закон электромагнитной индукции Фарадея, согласно которому изменяющееся магнитное поле создаёт электрическое поле, и закон Максвелла, по которому переменное электрическое поле ответственно за возникновение магнитного поля. Возникшее в какой-либо точке пространства изменяющееся, например, магнитное поле порождает изменяющееся электрическое поле, которое, в свою очередь, вызывает появление переменного магнитного поля и т.д. Возникает электромагнитное поле, которое распространяется в пространстве. При этом в каждой точке пространства векторы напряжённости электрического поля и индукции магнитного поля взаимно перпендикулярны и расположены в плоскости, перпендикулярной к направлению распространения волны.

2. Виды электромагнитных волн. Существованием электромагнитных волн объясняются многие явления, наблюдаемые в природе, которые часто не похожи друг на друга в своих проявлениях. Оказалось, что видимый свет, радиоволны, рентгеновские лучи, g-лучи имеют одну и ту же природу ¾ это электромагнитные волны, различающиеся только длиной волны. Электромагнитные волны в принципе могут иметь любую длину волны lu в вакууме (или частоту n, которая связана с lu соотношением n = с / lu , где с = 3×10 8 м/с ¾ скорость света в вакууме) от нуля до бесконечности. Весь диапазон длин волн можно приближённо разделить на ряд областей, каждая из которых связана с определённым видом излучения. Различные виды электромагнитных волн приведены в табл. 2, где приведены также приближённые значения частот и длин волн их

Частота, ГцДиапазон волнДлина волн, м
10 3 —10 12Радиоволны3·10 5 — 3·10 –4
10 12 — 10 14Инфракрасное излучение3·10 –4 — 8·10 –7
4·10 14 — 7,5·10 14Видимый свет7,5·10 –7 — 4·10 –7
7,5·10 14 — 10 17Ультрафиолетовое излучение4·10 –7 — 10 –9
10 17 — 10 20Рентгеновское излучение10 –9 — 10 –12
10 20 — 10 23g-излучение10 –12 — 10 –15

границ, поскольку соседние диапазоны перекрывают друг друга. Классификация различных видов электромагнитных волн, приведённая в таблице, основывается не только на их проявлениях, но и на способе их генерации. Электромагнитные волны с низкими частотами (n 3 Гц) генерируются переменными электрическими токами соответствующей частоты и не имеют практического значения. Радиоволны, используемые для радио и телепередач, генерируются при колебательных движениях зарядов в колебательном контуре, присоединённом к антенне. Инфракрасные (ИК) волны, диапазон которых примыкает к радиоволнам, возникают вследствие колебаний ионов кристаллических решёток, к которым подводится тепловая энергия (излучение ИК волн нагретой металлической спиралью в бытовом нагревательном рефлекторе). Очень узкий диапазон занимает видимый свет (от 400 до 750 нм).

Электромагнитные колебания, невидимые человеческим глазом, с более высокими частотами создают ультрафиолетовое излучение. Видимый свет и ультрафиолетовое излучение генерируются возбуждёнными валентными электронами атомов за счёт энергии, подводимой извне (свечение газонаполненной трубки под действием электрического тока). Рентгеновское излучение возникает при резком торможении потока электронов препятствиями. Пульсации ядерного заряда приводят к созданию g-излучения.

ВОЛНОВЫЕ СВОЙСТВА СВЕТА

С точки зрения волновой теории свет представляет собой электромагнитные волны с частотой n, лежащей в интервале от 0,4×10 15 до 0,75×10 15 Гц. Диапазон световых волн чаще выражают в длинах волн в вакууме (практически в воздухе). Используя соотношение длины lu световой волны с частотой колебания (lu = c/n, где c = 3×10 8 м/с — скорость света в вакууме), находим, что длины волн света в вакууме заключены в пределах от 0,75 до 0,4 мкм. Установлено, что цветовое воздействие света на глаз человека обусловлено его частотой. Так, световые волны с частотой 0,4·10 15 Гц воспринимаются как красный свет, а с частотой 0,75·10 15 Гц — как фиолетовый. Показано также, что световые волны, отличающиеся по длине волны менее чем на 2 нм, воспринимаются как одноцветные.

Интерференцией волн называют явление усиления и ослабления волн в определённых точках пространства при их наложении. Интерферировать могут только когерентные волны. Когерентными называются волны (источники), частоты которых одинаковы и разность фаз колебаний не зависит от времени. Геометрическое место точек, в которых происходит усиление или ослабление волн соответственно называют интерференционным максимумом или интерференционным минимумом, а их совокупность носит название интерференционной картины. В связи с этим можно дать иную формулировку явления. Интерференцией волн называется явление наложения когерентных волн с образованием интерференционной картины.

Рассмотрим процесс наложения двух когерентных волн любой природы (механические, электромагнитные). Пусть эти волны создаются когерентными источниками O1 и O2, находящимися в одной среде, амплитуды и циклические частоты которых одинаковы и равны А и w, а начальные фазы равны нулю. Расстояние между источниками О1 и О2 намного меньше расстояний х1 и х2от источников до точки наблюдения М. Тогда волны от источников О1 и О2 распространяются практически параллельно, и вызываемые ими колебания в точке M (рис. 3) находим, используя уравнение плоской монохроматической волны (см. (1)):

(4)

где x1 и x2 — мгновенные значения колеблющейся величины; l — длина волны в данной среде; x1 и x2 — расстояние от источников до точки наложения волн. Результирующее колебание s равно алгебраической сумме колебаний, обусловленных отдельными волнами, поскольку колебания происходят в одном направлении, т.е. Используя соотношение и полагая и , получаем: Выражение

(5)

M
х2
х1
О2
О1

Рис. 3

не зависит от времени. Поэтому его можно рассматривать как амплитуду результирующих колебаний, происходящих в точке М. В формуле (5) взята абсолютная величина, так как амплитуда по определению всегда положительная. С учётом этого уравнение колебаний в этой точке запишется в виде Таким образом, в произвольной точке М происходят гармонические колебания с той же циклической частотой w, амплитуда которых зависит от геометрической разности (х2х1) хода волн. Найдём условия усиления и ослабления колебаний в различных точках пространства. Очевидно, что амплитуда В результирующих колебаний будет максимальной в тех точках, для которых Это возможно, если , где m = 0, ±1, ±2, ¼. Отсюда

где m называют порядком интерференционного максимума. Из этого выражения следует, что когерентные волны, распространяющиеся в одной среде, усиливаются в точках, для которых геометрическая разность хода равна целому числу длин волн. Следовательно, соотношение (6) является условием интерференционного максимума.

Интенсивность результирующей волны будет наименьшей во всех точках,

для которых т.е. когда Отсюда

т.е. когерентные волны, распространяющиеся в одной среде, ослабляются в точках, для которых геометрическая разность хода равна полуцелому числу длин волн. Поэтому соотношение (7) является условием интерференционного минимума.

Изложенная теория интерференции справедлива для волн любой природы, в том числе для световых волн. Однако интерференционная картина световых волн может наблюдаться только в специальных условиях. Действительно, при наложении света одинакового цвета, испускаемого двумя независимыми источниками, например лампами накаливания, интерференция не происходит, поскольку эти источники некогерентные. В этом случае наблюдается суммирование интенсивностей световых волн. Для того чтобы наблюдать интерференцию света, надо излучение от одного и того же источника разделить на два пучка и заставить их затем попасть на экран различными путями. Это достигается за счёт отражения и преломления света. Рассмотрим один из методов наблюдения интерференции световых волн — бипризму Френеля. Бипризма (БП) состоит из двух стеклянных призм с малыми преломляющими углами, сложенных своими основаниями. Источником света служит ярко освещённая щель О, установленная параллельно ребру бипризмы (рис. 4). После преломления в бипризме пучок света разделяется на два пучка когерентных волн. В области АБ экрана Э волны налагаются, и возникает интерференционная картина в виде светлых и тёмных параллельных интерференционных полос.

О
О1
О2

Б
А

Рис. 4

Э

С интерференцией волн тесно связано другое важное явление — дифракция. Дифракцией называется явление огибания волнами препятствий. Дифракция зависит от соотношения размеров препятствия и длины волны. Она проявляется заметным образом, если размеры препятствий и длины волны соизмеримы. Поэтому дифракция звуковых волн наблюдается легко, а в случае света, длина волны которого много меньше размеров препятствий, наблюдается в специальных условиях. Так, можно через приоткрытую дверь слышать собеседников в соседней комнате, даже если вы их не видите. На языке оптики дифракция означает проникновение света в область геометрической тени.

|следующая лекция ==>
По факторний аналіз інфляції|Коротка характеристика та класифікація підприємств

Дата добавления: 2015-09-28 ; просмотров: 7036 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Бегущие электромагнитные волны

Бегущие волны – это волны, которые переносят энергию в пространстве. Количественно транспортирование энергии этой волной назначает вектор плотности потока энергии, называемый вектором Умова-Пойтинга. Его направление совпадает с направлением распространения энергии. Модуль вектора равняется энергии, которую может переносить волна за время, равное 1 с , через площадку, располагаемую перпендикулярно к направлению ее движения с площадью, равняющуюся 1 .

Уравнение плоской бегущей волны

Для получения уравнения бегущей волны рассматривается плоская гармоническая. Считается, что она распространяется по О х . Поверхности волны перпендикулярны О х , все точки волновой поверхности совершают колебания одинаково, смещение ξ = ξ ( x , t ) будет функцией с координатой x и временем t . Запись уравнение колебаний частиц, находящихся на плоскости х , примет вид:

ξ ( x , t ) = A cos ω t — x υ ( 1 ) .

Отсюда ξ ( x , t ) является периодической по времени и по координате х . уравнение ( 1 ) называют уравнением бегущей волны. Если плоская волна задается при помощи выражения ( 1 ) , то ее перемещение идет по О х . При обратном ее направлении по О х уравнение запишется как:

ξ ( x , t ) = A cos ω t + x υ ( 2 ) .

Если волна движется по О х без поглощения энергии, то это характеризуется уравнением:

ξ ( x , t ) = A cos ω t — x υ + φ 0 ( 3 ) .

Значение A = c o n s t относят к амплитуде, ω – к циклической частоте волны, φ 0 — к начальной фазе колебаний, определяемой выбором началом отсчета x и t , ω t — x υ + φ 0 – к фазе плоской волны.

Что называют электромагнитной волной. Волновое число

Электромагнитные волны – это распространяющиеся в пространстве изменения состояния электромагнитного поля. Они характеризуются волновым числом k .

Запись выражения ( 1 ) примет совершенно другой вид при известном волновом числе.

Если перейти к комплексным числам, применив формулу Эйлера, уравнение плоской волны зафиксируем.

Выражение ( 6 ) имеет физический смысл только в действительной части, но R e возможно опустить в записи уравнения волны.

Перейдем к рассмотрению волнового процесса, где не происходит изменение фазы.

Далее найдем дифференциал от выражения ( 7 ) .

При условии, что υ волны зависит от частоты колебаний, то такая волна подвержена дисперсии.

Уравнение сферической бегущей волны

Сферическая волна – это волна, волновая поверхность которой является концентрической сферой. Такое уравнение примет вид:

ξ ( r , t ) = A 0 r cos ω t — k r + φ 0 ( 11 ) ,

где r является расстоянием от центра волны до точки рассмотрения. Если имеем дело со сферической волной, то ее амплитуда колебаний не будет постоянной даже при условии, что энергия не поглощается средой. Ее убывание происходит обратно пропорционально расстоянию. Выполнение уравнения ( 8 ) возможно тогда, когда источник волн считается точечным.

Уравнение бегущей волны в любом виде подчинено волновому уравнению.

Дана плоская электромагнитная волна в вакууме, которая распространяется по О х . Амплитуда напряженности электрического поля равняется E m . Определить амплитуду напряженности магнитного поля заданной волны.

За основу необходимо принять выражение для амплитуд электромагнитной волны:

ε ε 0 E = μ μ 0 H ( 1 . 1 ) .

Запись уравнения колебаний модуля E → в электромагнитной волне при условии, что она является плоской и идет по О х , фиксируем:

E = E m cos ω t — k x ( 1 . 2 ) .

Для записи уравнения колебаний H → в электромагнитной волне, в случае если она считается плоской и распространяется по О х :

H = H m cos ω t — k x ( 1 . 3 ) .

Из условия имеем, что волна производит рассеивание в вакууме, то ε = 1 , μ = 1 . Применяя ( 1 . 1 ) , ( 1 . 2 ) , ( 1 . 3 ) :

ε 0 E m = μ 0 H m → H m = ε 0 μ 0 E m .

Ответ: H m = ε 0 μ 0 E m .

Распространение электромагнитной плоской волны идет в вакууме по О х . Ее падение производится перпендикулярно поверхности тела, которое способно полностью поглощать волну. Значение амплитуды напряженности магнитного поля равняется
H m . Определить давление волны на тело.

Необходимо учитывать, что тело, которое поглощает падающую на него энергию, оказывается под давлением, равным среднему значению объемной плотности энергии в электромагнитной волне.

Следует применять соотношение амплитуд электромагнитной волны, которое записывается:

ε ε 0 E = μ μ 0 H .

Для того, чтобы зафиксировать уравнение колебаний E при распространении волны по О х , получим:

E = E m cos ω t — k x .

Теперь перейдем к уравнению колебаний H , если рассеивание плоской волны идет соответственно направлению О х . Запишем:

H = H m cos ω t — k x .

Следует, что значение объемной плотности электрической энергии примет вид:

ω E = ε ε 0 E 2 2 .

Формула плотности магнитного поля:

ω H = μ μ 0 H 2 2 .

Причем ω E = ω H . Запись примет вид:

ω = ω E + ω H = 2 ω H = μ μ 0 H 2 = μ μ 0 H m 2 cos 2 ω t — k x .

После усреднения плотности, имеем:

» open=» ω = » open=» μ μ 0 H m 2 cos 2 ω t — k x .

При » open=» cos 2 ω t — k x = 1 2 получаем:

p = » open=» ω = μ μ 0 H m 2 2 .

Ответ: p = » open=» ω = μ μ 0 H m 2 2 .

Уравнение плоской монохроматической волны.

Монохроматическая волна — модель в физике, удобная для теоретического описания явлений волновой природы, означающая, что в спектр волны входит всего одна составляющая по частоте.

Монохроматическая волна — строго гармоническая (синусоидальная) волна с постоянными во времени частотой, амплитудой и начальной фазой.

s(x,t) = s cos (k(Vt±x)+φ)
s — амплитуда
k — волновое число
V — фазовая скорость
x — расстояние до источника
φ — начальная фаза

Характеристики волн.

Свойства электромагнитных волн.

Основными свойствами электромагнитных волн являются:

1) если на пути волны проводник, то электромагнитные волны хорошо отражаются и частично поглощаются (приема нет) ;если на пути волны диэлектрик, то прием хороший, то есть диэлектрик слабо отражает и слабо поглощает электромагнитные волны

2) возмущения волновых полей, вызываемые неоднородностями среды и помещёнными в эту среду рассеивающими объектами. Допустимо различать три осн. вида рассеяния.

3) изменение направления распространения волн (лучей) электромагнитного излучения, возникающее на границе раздела двух прозрачных для этих волн сред или в толще среды с непрерывно изменяющимися свойствами

4) изменение направления распространения электромагнитной волны на границе двух сред, при котором падающая на границу раздела волна частично или полностью возвращается в первую среду.

5) взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волнпри их наложении друг на друга. [1] Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

6) буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя, как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

7) характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Дисперсия света.

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн от их частоты.

Дисперсия света представляется в виде зависимости:

или .

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.


источники:

http://zaochnik.com/spravochnik/fizika/volnovaja-optika/beguschie-elektromagnitnye-volny/

http://poisk-ru.ru/s74441t1.html