Напишите уравнение реакции гидролиза соли nh4cl

Что такое гидролиз солей

Гидролиз соли

взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита

В общем случае под гидролизом понимают обменное разложение веществ водой, как органических, так и неорганических. Из неорганических веществ чаще всего гидролизу подвергаются соли.

Количественно гидролиз соли характеризуется степенью гидролиза, который зависит от природы самой соли, концентрации раствора, температуры:

Степень гидролиза (h) равна отношению числа гидролизованных молекул (n) к общему числу растворенных молекул (N)
h=n/N

Схема реакции гидролиза:

  • XY — соль;
  • HOH — молекула воды;
  • XH — кислота;
  • HOY — основание.

Скорость гидролиза растет с:

  • повышением температуры;
  • увеличением разведения раствора.

Реакция гидролиза, как правило, обратимая, при этом равновесие реакции можно смещать в ту или другую сторону, добавляя к раствору соли сильную кислоту, либо сильное основание.

Всего возможны 4 варианта гидролиза солей, в зависимости от способа образования соли:

  • гидролиз по катиону — соль образована сильной кислотой и слабым основанием: NH4NO3, NH4Cl; ZnCl2; [Cu(NO3)2]; AlCl3;
  • гидролиз по аниону — соль образована слабой кислотой и сильным основанием: KNO2, Na2CO3; Na2SO3; K2S; CH3COONa;
  • гидролиз по катиону и аниону — соль образована слабой кислотой и слабым основанием: NH4CN; Al2S3; NH4NO2; CH3COONH4;
  • соли, образованные сильной кислотой и сильным основанием, гидролизу не подвергаются.
  • сильные кислоты: HNO3, H2SO4, HCl, HBr, HI, HClO4, H2CrO4;
  • слабые кислоты: HNO2, HF, HCN, H2SO3, H2CO3, H2S, CH3COOH;
  • сильные основания: LiOH, NaOH, KOH, Ca(OH)2, Ba(OH)2, Sr(OH)2;
  • слабые основания: NH4OH, Fe(OH)2, Fe(OH)3, Cr(OH)3, Cu(OH)2, Zn(OH)2, Al(OH)3.
Сильные основанияСлабые основания
Сильные кислотыгидролиза нет
pH=7
гидролиз по катиону
pH 7
гидролиз по катиону и аниону
pH≈7

Гидролиз по катиону

  • NH4NO3 — нитрат аммония образован сильной кислотой и слабым основанием;
  • NH4OH — слабое основание;
  • HNO3 — сильная кислота.

Уравнение гидролиза по катиону в ионном виде:

В процессе гидролиза катион NH4 + связывает гидроксид-ионы [OH — ] воды (красный цвет), в результате чего появляется избыток катионов водорода [H + ] и раствор становится кислым [H + ]>[OH — ] (pH K + + NO2 — + H OH ↔ HNO2 + K + + OH —

При гидролизе солей по аниону все происходит с точностью, до наоборот — анион слабой кислоты NO2 — связывает катион водорода [H + ] (выделены синим цветом), в результате чего появляется избыток гидроксид ионов [OH — ], раствор становится щелочным [H + ] — ] (pH>7).

Гидролиз по катиону и аниону

  • NH4CN — цианид аммония образован слабой кислотой и слабым основанием;
  • HCN — слабая кислота;
  • NH4OH — слабое основание.

Уравнение гидролиза по аниону и катиону в ионном виде:

NH4 + + CN — + H OH ↔ NH4OH + HCN

Реакция раствора соли NH4CN слабощелочная, поскольку Kд(NH4OH)>Kд(HCN).

Кислотность раствора зависит от силы образующихся кислоты и основания. Гидролиз солей, образованных слабыми кислотами и основаниями, идет до конца, если в процессе реакции выпадает осадок или образуется газ.

Ионы солей, образованных сильными кислотами и основаниями, не образуют с ионами воды малодиссоциирующих соединений, поэтому не гидролизуются, раствор при этом остается нейтральным.

Соли, образованные двух(трех)основными кислотами и(или) двух(трех)кислотными основаниями гидролизуются ступенчато.

Ступенчатый гидролиз

1) Соль образована слабой многоосновной кислотой и сильным основанием — кол-во ступеней такого гидролиза зависит от основности слабой кислоты.

В качестве примера разберем гидролиз карбоната калия K2CO3.

Соль образована слабой двухосновной кислотой (H2CO3) и сильным основанием (KOH), поэтому, ее гидролиз протекает по аниону (см. выше).

Поскольку кислота H2CO3 является двухосновной, то и гидролиз будет двухступенчатым.

Первая ступень гидролиза карбоната калия:
K2 CO3 + H OH ↔ KOH+K HCO3

Продуктами первой ступени гидролиза карбоната калия являются гидроксид калия (KOH) и кислая соль (KHCO3).

Сокращенное ионное уравнение первой ступени гидролиза:

Вторая ступень гидролиза карбоната калия:
K2 HCO3 + H OH ↔ KOH+ H2CO3

Продуктами второй ступени гидролиза карбоната калия является всё тот же гидроксид калия (KOH) и слабая угольная кислота (H2CO3).

Сокращенное ионное уравнение второй ступени гидролиза:

Гидролиз второй ступени протекает в значительно меньшей степени, чем гидролиз первой ступени. Поскольку в процессе гидролиза увеличивается концентрация гидроксид-ионов, среда раствора получившейся соли K2CO3 является щелочной.

2) Соль образована сильной кислотой и слабым многокислотным основанием — кол-во степеней такого гидролиза определяется кислотностью слабого основания.

В качестве примера разберем гидролиз хлорида никеля NiCl2 (II).

Соль образована сильной кислотой (HCl) и слабым основанием (Ni(OH)2), поэтому, ее гидролиз протекает по катиону (см. выше).

Первая ступень гидролиза хлорида никеля в ходе которой катионы никеля связывают гидроксид-ионы воды:

Ni Cl2+H OH ↔ NiOH Cl+HCl

Продуктами первой ступени гидролиза хлорида никеля являются сильная кислота (HCl) и основная соль(NiOHCl).

Сокращенное ионное уравнение первой ступени гидролиза:

Вторая ступень гидролиза:

NiOH Cl+H OH ↔ Ni(OH)2 +HCl

Продукты второй ступени гидролиза хлорида никеля являются сильная кислота и слабое основание.

Сокращенное ионное уравнение второй ступени гидролиза:

Гидролиз второй ступени протекает в значительно меньшей степени, чем гидролиз первой ступени. Поскольку в процессе гидролиза увеличивается концентрация ионов водорода, среда получившегося раствора NiCl2 является кислой.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Вычисление константы гидролиза, определение степени гидролиза соли

Задача 588.
Вычислить константу гидролиза фторида калия, определить степень гидролиза этой соли в 0,01 М растворе и рН раствора.
Решение:
K(HF) = 6,6 . 10 -4 .
KF — соль сильного основания и слабой кислоты, поэтому гидролиз соли проходит по аниону:

Константа гидролиза соли определяется константой диссоциации образовавшейся кислоты HF и определяется по формуле:

Теперь рассчитаем концентрацию образовавшихся ионов OH — :

Ответ: КГ = 1,5 . 10 -11 ; h = 3,9 . 10 -5 ; pH = 7,59.

Задача 589.
Вычислить константу гидролиза хлорида аммония, определить степень гидролиза этой соли в 0,01 М растворе и рН раствора.
Решение:
K(NH4OH) = 1,8 . 10-5.
NH4Cl — соль слабого основания и сильной кислоты гидролизуется по катиону:

Константа гидролиза соли определяется константой диссоциации образовавшегося основания NH4OH и определяется по формуле:

Теперь рассчитаем концентрацию образовавшихся ионов H + :

Ответ: КГ = 5,6 . 10 -10 ; h = 2,4 . 10 -4 ; pH = 6,65.

Задача 590.
Определить рН 0,02 н. раствора соды Na2CO3, учитывая только первую ступень гидролиза.
Решение:
K1(H2CO3) = 4,5 . 10 -7 .
Na2CO3 — соль сильного основания и слабой кислоты, поэтому гидролиз соли проходит по аниону:

Здесь h — степень гидролиза соли, показывает долю гидролизованных ионов.

Теперь рассчитаем концентрацию образовавшихся ионов OH — :

Соли аммония: получение и химические свойства

Соли аммония

Соли аммония – это соли, состоящие из катиона аммония и аниона кислотного остатка .

Способы получения солей аммония

1. Соли аммония можно получить взаимодействием аммиака с кислотами . Реакции подробно описаны выше.

2. Соли аммония также получают в обменных реакциях между солями аммония и другими солями.

Например , хлорид аммония реагирует с нитратом серебра:

3. Средние соли аммония можно получить из кислых солей аммония . При добавлении аммиака кислая соль переходит в среднюю.

Например , гидрокарбонат аммония реагирует с аммиаком с образованием карбоната аммония:

Химические свойства солей аммония

1. Все соли аммония – сильные электролиты , почти полностью диссоциируют на ионы в водных растворах:

NH4Cl ⇄ NH4 + + Cl –

2. Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями , если в продуктах образуется газ, осадок или образуется слабый электролит.

Например , карбонат аммония реагирует с соляной кислотой. При этом выделяется углекислый газ:

Соли аммония реагируют с щелочами с образованием аммиака.

Например , хлорид аммония реагирует с гидроксидом калия:

NH4Cl + KOH → KCl + NH3 + H2O

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

3. Соли аммония подвергаются гидролизу по катиону , т.к. гидроксид аммония — слабое основание:

4. При нагревании соли аммония разлагаются . При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:

Если соль содержит анион-окислитель, то разложение сопровождается изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

При температуре 250 – 300°C:

При температуре выше 300°C:

Разложение бихромата аммония («вулканчик»). Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

Окислительхром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду. Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив. Температура плавления – почти 2300 градусов. Оксид хрома – очень устойчивое вещество, не растворяется даже в кислотах. Благодаря устойчивости и интенсивной окраске окись хрома используется при изготовлении масляных красок.

Видеоопыт разложения дихромата аммония можно посмотреть здесь.


источники:

http://buzani.ru/zadachi/khimiya-glinka/1198-konstanta-gidroliza-soli-zadachi-537

http://chemege.ru/soli-ammoniya/