Напишите уравнение реакции получения водорода кислорода и озона

Напишите уравнение реакции получения озона из кислорода. Ответ дайте в виде суммы коэффициентов в уравнении реакции.

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,298
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,227
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Кислород: химия кислорода

Кислород

Положение в периодической системе химических элементов

Кислород расположен в главной подгруппе VI группы (или в 16 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение кислорода

Электронная конфигурация кислорода в основном состоянии :

+8O 1s 2 2s 2 2p 4 1s 2s 2p

Атом кислорода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 2 неподеленные электронные пары в основном энергетическом состоянии.

Физические свойства и нахождение в природе

Кислород О2 — газ без цвета, вкуса и запаха, немного тяжелее воздуха. Плохо растворим в воде. Жидкий кислород – голубоватая жидкость, кипящая при -183 о С.

Озон О3 — при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода.

Кислород — это самый распространённый в земной коре элемент. Кислород входит в состав многих минералов — силикатов, карбонатов и др. Массовая доля элемента кислорода в земной коре — около 47 %. Массовая доля элемента кислорода в морской и пресной воде составляет 85,82 %.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе.

Способы получения кислорода

В промышленности кислород получают перегонкой жидкого воздуха.

Лабораторные способы получения кислорода:

  • Разложение некоторых кислородосодержащих веществ:

Разложение перманганата калия:

Разложение бертолетовой соли в присутствии катализатора MnO2 :

2KClO3 → 2KCl + 3O2

Разложение пероксида водорода:

2HgO → 2Hg + O2

Соединения кислорода

Основные степени окисления кислород +2, +1, 0, -1 и -2.

Степень окисленияТипичные соединения
+2Фторид кислорода OF2
+1Пероксофторид кислорода O2F2
-1Пероксид водорода H2O2

Пероксид натрия Na2O2 и др.

-2Вода H2O

Оксиды металлов и неметаллов Na2O, SO2 и др.

Соли кислородсодержащих кислот

Кислородсодержащие органические вещества

Основания и амфотерные гидроксиды

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя (с большинством химических элементов) и свойства восстановителя (только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами , и с неметаллами . Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремнием с образованием оксидов:

1.3. Фосфор горит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

Но чаще фосфор сгорает до оксида фосфора (V):

1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):

N2 + O2→ 2NO

1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:

2Ca + O2 → 2CaO

Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:

2Na + O2→ Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

K + O2→ KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn + O2→ 2ZnO

Железо , в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe + O2→ 2FeO

4Fe + 3O2→ 2Fe2O3

3Fe + 2O2→ Fe3O4

1.6. При нагревании с избытком кислорода графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды . При этом образуются оксиды:

4FeS + 7O2→ 2Fe2O3 + 4SO2

Ca3P2 + 4O2→ 3CaO + P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения ( сероводород, аммиак, метан, силан гидриды . При этом также образуются оксиды:

2H2S + 3O2→ 2H2O + 2SO2

Аммиак горит с образованием простого вещества, азота:

4NH3 + 3O2→ 2N2 + 6H2O

Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 + 5O2→ 4NO + 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора ( сероуглерод, сульфид фосфора и др.):

CS2 + 3O2→ CO2 + 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления ( оксид углерода (II), оксид железа (II) и др.):

2CO + O2→ 2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например , кислород окисляет гидроксид железа (II):

Кислород окисляет азотистую кислоту :

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 + 2O2→ CO2 + 2H2O

2CH4 + 3O2→ 2CO + 4H2O

CH4 + O2→ C + 2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

Строение и химические свойства озона. Применение озона

Задача 837.
Описать электронное строение молекулы O3, сравнить химическую активность озона и молекулярного кислорода O2. Как получить озон из молекулярного кислорода?
Решение:
Электронное строение трёхатомной молекулы озона можно представить схемой:

Установлено, что все связи центрального атома кислорода с двумя другими атомами кислорода одинаковы (равноценны) как по длине, так и по энергии. Значит σ- связь, образованная негибридизированными р-орбиталями, является трёхцентровой ковалентной, т.е. электронная — пара делокализована и принадлежит в равной степени всем трём атомам кислорода. Молекула О3 построена в форме равнобедренного треугольника, угол при вершине треугольника 117 0 , что указывает на то, что, центральный атом кислорода находится в состоянии sp 2 – гибридизации. Гибридная sp 2 – орбиталь, содержащая один электрон в центральном атоме, перекрывается с негибридной рх – орбиталью одного из крайних атомов кислорода, образуя σ — связь. Не участвующая в гибридизации рz – орбиталь центрального атома перекрывается с рz – орбиталью другого атома кислорода, образуя σ — связь. Наконец, выступая в качестве донора электронной пары центральный атом кислорода, образует с другим атомом кислорода σ — связь по донорно-акцепторному механизму. Структуру молекулы О3 можно представить схемой:

Рис.3. Структура молекулы О3

Озон как и кислород является сильнейшим окислителем. Он окисляет все металлы, кроме золота и платины. Озон переводит низшие оксиды в высшие, а сульфаты металлов – в их сульфиты. В ходе этих реакций молекула озона теряет один атом кислорода, переходит в молекулу кислорода.

Из раствора иодида калия озон выделяет йод (качественная реакция на О3):

Таким образом, озон более сильный окислитель, чем кислород.

Озон можно получить из молекулярного кислорода действием на последний тихих электрических разрядов:

В природе озон образуется под действием электрических разрядов.

Задача 838.
Может ли при комнатной температуре протекать реакция взаимодействия кислорода: а) с водородом; б) с азотом? Ответ мотивировать, используя табличные данные стандартных значений энергии Гиббса образования веществ, участвующих в процессах.
Решение:
Уравнение реакции взаимодействия водорода с кислородом имеет вид:

Реакция протекает с большим выделением теплоты. Энергия Гиббса образования Н2О имеет отрицательное значение (-228,8 кДж/моль),
ΔG 0 0 С реакция протекает со скоростью в несколько дней, а при 500 0 С кислород и водород полностью прореагируют за несколько часов, при 700 0 С происходит быстрый подъём температуры и реакция заканчивается взрывом. Поэтому, чтобы вызвать взрыв смеси водорода с кислородом, нужно подогреть её хотя бы в одном месте до 700 0 С.

б) При обычных условиях кислород и азот не реагируют друг с другом. Объяснить это можно тем, что энергия Гиббса всех оксидов азота имеет положительное значение, ΔG 0 > 0. Из табличных данных следует, что энтальпия образования всех оксидов азота тоже положительна, т. е. данные реакции являются эндотермическими. Малая скорость взаимодействия кислорода с азотом объясняется высокой энергией активации этих процессов. Молекулы кислорода и азота очень прочны, поэтому чтобы сделать кинетическую энергию сталкивающихся молекул большой необходимо очень сильно повысить температуру системы. И только при достаточно высокой температуре некоторые соударения молекул кислорода и азота становятся эффективными и приводят к образованию активных центров. Так кислород и азот взаимодействуют при температуре электрической дуги (3000 – 4000 0 С):

N2 + O2 2NO

Это эндотермическая реакция, поэтому наблюдается тенденция к уменьшению внутренней энергии, что способствует протеканию данного процесса в обратном направлении, а тенденция к увеличению вероятности состояния вызывает её частичное протекание в прямом направлении. Поэтому, чтобы система N2 + O2 = 2NO достигла наиболее вероятного состояния, необходима высокая температура. Поэтому все оксиды азота получают косвенным путём.

Задача 839.
После озонирования при постоянной температуре некоторого объема кислорода установлено, что объем газа, приведенный к исходному давлению, уменьшился на 500 мл. Какой объем озона образовался? Какое количество теплоты поглотилось при его образовании, если для озона ΔН 0 298о = 144,2 кДж/моль?
Решение:
Уравнение реакции:

Из уравнения реакции следует, что из 3 моль кислорода образуется 2 моль озона, т.е. объём системы уменьшается на 1 моль. Можно записать соотношение, показывающее зависимость от образовавшегося объёма озона и уменьшением объёма системы, получим:

2 : 1 = х : 0,5; х = (2 . 0,5)/1 = 1л.

Находим ΔН 0 реакции:

ΔН 0 х.р. = 2 ΔН 0 (O3) — 3 ΔН 0 (O2) = (2 . 144,2) – 3 . 0 = 288,4 кДж.

Количество теплоты рассчитаем из пропорции:

2 : 22,4 : 288,4 = 1 : х; х = (288,4 . 1)/ (2 . 22,4) = 6,44 кДж.

Ответ: 1л О3; 6,44 кДж.


источники:

http://chemege.ru/kislorod/

http://buzani.ru/zadachi/khimiya-glinka/1275-kharakteristika-ozona-zadachi-837-839