Напишите уравнения гидролиза по первой ступени

Гидролиз

Темы кодификатора ЕГЭ: Гидролиз солей. Среда водных растворов: кислая, основная и щелочная.

Гидролиз – взаимодействие веществ с водой. Гидролизу подвергаются разные классы неорганических и органических веществ: соли, бинарные соединения, углеводы, жиры, белки, эфиры и другие вещества. Гидролиз солей происходит, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

Гидролиз солей может протекать:

обратимо : только небольшая часть частиц исходного вещества гидролизуется.

необратимо : практически все частицы исходного вещества гидролизуются.

Для оценки типа гидролиза необходимо рассмотреть соль, как продукт взаимодействия основания и кислоты. Любая соль состоит из металла и кислотного остатка. Металлы соответствует основание или амфотерный гидроксид (с той же степенью окисления, что и в соли), а кислотному остатку — кислота. Например, карбонату натрия Na2CO3 соответствует основание — щелочь NaOH и угольная кислота H2CO3.

Обратимый гидролиз солей

Механизм обратимого гидролиза будет зависеть от состава исходной соли. Можно выделить 4 основных варианта, которые мы рассмотрим на примерах:

1. Соли, образованные сильным основанием и слабой кислотой , гидролизуются ПО АНИОНУ .

CH3COONa + HOH ↔ CH3COOH + NaOH

CH3COO — + Na + + HOH ↔ CH3COOH + Na + + OH —

сокращенное ионное уравнение:

CH3COO — + HOH ↔ CH3COOH + OH —

Таким образом, при гидролизе таких солей в растворе образуется небольшой избыток гидроксид-ионов OH — . Водородный показатель такого раствора рН>7 .

Гидролиз солей многоосновных кислот (H2CO3, H3PO4 и т.п.) протекает ступенчато, с образованием кислых солей:

CO3 2- + HOH ↔ HCO3 2- + OH —

или в молекулярной форме:

или в молекулярной форме:

Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.

2. Соли, образованные слабым основанием и сильной кислотой , гидролизуются ПО КАТИОНУ . Пример такой соли: NH4Cl, FeCl3, Al2(SO4)3 Уравнение гидролиза:

или в молекулярной форме:

При этом катион слабого основания притягивает гидроксид-ионы из воды, а в растворе возникает избыток ионов Н + . Водородный показатель такого раствора рН .

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. Например:

Fe 3+ + HOH ↔ FeOH 2+ + H +

FeCl3 + HOH ↔ FeOHCl2 + H Cl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H +

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H +

Fe(OH)2Cl + HOH ↔ Fe(OH)3 + HCl

Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.

3. Соли, образованные слабым основанием и слабой кислотой , гидролизуются И ПО КАТИОНУ, И ПО АНИОНУ .

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. В большинстве случаев реакция раствора будет примерно нейтральной, рН ≅ 7 . Точное значение рН зависит от относительной силы основания и кислоты.

4. Гидролиз солей, образованных сильным основанием и сильной кислотой , в водных растворах НЕ ИДЕТ .

Сведем вышеописанную информацию в общую таблицу:

Необратимый гидролиз

Необратимый гидролиз происходит, если при гидролизе выделяется газ, осадок или вода, т.е. вещества, которые при данных условиях не могут взаимодействовать между собой. Необратимый гидролиз является химической реакцией, т.к. реагирующие вещества взаимодействуют практически полностью.

Варианты необратимого гидролиза:

  1. Гидролиз, в который вступают растворимые соли 2х-валентных металлов (Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.) с сильным ионизирующим полем (слабые основания) и растворимые карбонаты/гидрокарбонаты. При этом образуются нерастворимые основные соли (гидроксокарбонаты):

! Исключения: (соли Ca, Sr, Ba и Fe 2+ ) – в этом случае получим обычный обменный процесс:

МеCl2 + Na2CO3 = МеCO3 + 2NaCl (Ме – Fe, Ca, Sr, Ba).

  1. Взаимный гидролиз , протекающий при смешивании двух солей, гидролизованных по катиону и по аниону. Продукты гидролиза по второй ступени усиливают гидролиз по первой ступени и наоборот. Поэтому в таких процессах образуются не просто продукты обменной реакции, а продукты гидролиза (совместный или взаимный гидролиз). Соли металлов со степенью окисления +3 (Al 3+ , Cr 3+ ) и соли летучих кислот (карбонаты, сульфиды, сульфиты) при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ (H2S, SO2, CO2):

Соли Fe 3+ при взаимодействии с карбонатами также при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ:

! Исключения: при взаимодействии солей трехвалентного железа с сульфидами реализуется окислительно-восстановительная реакция:

2FeCl3 + 3K2S(изб) = 2FeS + S↓ + 6KCl (при избытке сульфида калия)

При взаимодействии солей трехвалентного железа с сульфитами также реализуется окислительно-восстановительная реакция.

Полные уравнения таких реакций выглядят довольно сложно. Поначалу я рекомендую составлять такие уравнения в 2 этапа: сначала составляем обменную реацию без участия воды, затем разлагаем полученный продукт обменной реакции водой. Сложив эти две реакции и сократив одинаковые вещества, мы получаем полное уравнение необратимого гидролиза.

3. Гидролиз галогенангидридов и тиоангидридов происходит также необратимо. Галогенангидриды разлагаются водой по схеме ионного обмена (H + OH — ) до соответствующих кислот (в случае водного гидролиза) и солей (в случае щелочного гидролиза). Степень окисления центрального элемента и остальных при этом не изменяется!

Галогенангидрид – это соединение, которое получается, если в кислоте ОН-группу заменить на галоген. При гидролизе галогенангидридов кислот образуются соответствующие данным элементам и степеням окисления кислоты и галогеноводородные кислоты.

Галогенангидриды некоторых кислот:

КислотаГалогенангидриды
H2SO4SO2Cl2
H2SO3SOCl2
H2CO3COCl2
H3PO4POCl3, PCl5

Тиоангидриды (сульфангидриды) — так называются, по аналогии с безводными окислами (ангидридами), сернистые соединения элементов (например, Sb2S3, As2S5, SnS2, CS2 и т. п.).

  1. Необратимый гидролиз бинарных соединений, образованных металлом и неметаллом:
  • сульфиды трехвалентных металлов вводе необратимо гидролизуются до сероводорода и и гидроксида металла:

при этом возможен кислотный гидролиз, в таком случае образуются соль металла и сероводород:

  • гидролиз карбидов приводит к образованию гидроксида металла в водной среде, соли металла в кислой де и соответствующего углеводорода — метана, ацетилена или пропина:
  1. Некоторые соли необратимо гидролизуются с образованием оксосолей :

BiCl3 + H2O = BiOCl + 2HCl,

SbCl3 + H2O = SbOCl + 2HCl.

Алюмокалиевые квасцы:

Количественно гидролиз характеризуется величиной, называемой степенью гидролиза .

Степень гидролиза (α) — отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. В случае необратимого гидролиза α≅1.

Факторы, влияющие на степень гидролиза:

1. Температура

Гидролиз — эндотермическая реакция! Нагревание раствора приводит к интенсификации процесса.

Пример : изменение степени гидролиза 0,01 М CrCl3 в зависимости от температуры:

2. Концентрация соли

Чем меньше концентрация соли, тем выше степень ее гидролиза.

Пример : изменение степени гидролиза Na2CO3 в зависимости от температуры:

По этой причине для предотвращения нежелательного гидролиза хранить соли рекомендуется в концентрированном виде.

3. Добавление к реакционной смеси кислоты или щелочи

Изменяя концентрация одного из продуктов, можно смещать равновесие реакции гидролиза в ту или иную сторону.

Гидролиз солей, образованных кислотой и основанием

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Гидролиз солей.

Гидролиз – химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодисcоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых или катионов основных солей) и сопровождающееся изменением рН среды. Гидролизу не подвергаются соли, образованные сильными кислотами и основаниями, например КСl.

Гидролиз соли, образованной слабой кислотой и сильным основанием, например CH3COONa. Соль в рас­творе полностью диссоциирует на ионы:

Вода, как уже указывалось, является слабым электролитом:

Ионы водорода воды взаимодействуют с ацетат-ионами с образованием слабой уксусной кислоты

Таким образом, гидролиз в ионной форме можно представит уравнением

Как видно, в результате гидролиза появилось некоторое избыточное количество гидроксид-ионов, а реакция среды стала основной, следовательно, при гидролизе соли, образованной сильным основанием и слабой кислотой, происходит увеличение рН системы, т. е. среда становится основной (происходит подщелачивание раствора).

Показателем глубины протекания гидролиза является степень гидролиза β, представляющая собой отношение концентрации гидролизованных молекул сгидр к исходной концентрации растворенных молекул электролита:

Принимая для упрощения, что в разбавленных растворах активность ионов мало отличается от их концентрации сиона = аиона, запишем константу равновесия реакции гидролиза:

Так как концентрация воды при гидролизе изменяется очень ма­ло, то принимаем ее постоянной и, умножая на константу равновесия, получим константу гидролиза Кr:

Как указывалось ранее, [OH – ][ Н + ] ≈ КВ, а отношение – [Н + ][А – ] / [НА]

является константой диссоциации КД слабой кислоты НА. Таким обра­зом, константа гидролиза равна отношению ионного произведения воды и константы диссоциации слабого электролита:

Если выразить концентрацию ионов и молекул при установлении равновесия

через степень гидролиза β и исходную концентрацию иона с, то по­лучаем, что

Подставив эти значения в уравнение

Если гидролизу подвергается многоосновной анион, то гидролиз протекает по стадиям:

Константа гидролиза по первой ступени значительно выше, чем константа гидролиза по последней ступени. Например, для гидролиза СО3 2 – , при 298 К

Поэтому, при расчете концентраций ионов [ОН – ] или [Н + ], второй и третьей ступенью гидролиза обычно пренебрегают. Анализ уравне­ний гидролиза показывает, что в уравнении Кr = КВ / КД для расчета кон­станты гидролиза по первой ступени входит константа диссоциа­ции слабого электролита по последней ступени. Например, константа гидролиза иона СО3 2- по первой ступени

Гидролиз солей, образованных сильной кислотой и слабым основанием, напримерNH4C1. В растворе соль NH4Cl диссоциирована

Гидролизу подвергается ион слабого основания NH4 +

Как видно, в результате гидролиза соли появляется некоторое избыточное количество ионов водорода, т. е. среда подкисляется. Таким образом, гидролиз соли, образованной сильной кислотой и сла­бым основанием, приводит к подкислению раствора.

Степень гидролиза и константа гидролиза в данном случае опи­сываются теми же уравнениями, но лишь с включением константы дис­социации слабого основания.

Гидролиз соли, образованной слабым основанием и слабой кислотой, напримерNH4F

Как видно, в результате гидролиза образуются как ионы водорода, так и ионы гидроксида. Константа гидролиза зависит от константы диссоциации как слабого основания КД,О, так и слабой кислоты КД,К

Как видно, в зависимости от соотношения рКД,К и рКД,О среда мо­жет иметь как кислую, так и основную реакцию.

Гидролиз играет важную роль в природных и технологических процессах. Например, расщепление пищи в желудочно-кишечном тракте идет по реакции гидролиза ее компонентов. Энергия в орга­низмах в основном переносится с помощью аденозинтрифосфата (АТФ), гидролиз которого характеризуется отрицательным значени­ем энергии Гиббса (-30,5 кДж/моль).

Гидролиз используется в технике при получении ценных продук­тов из древесины, жиров и других веществ.

Пример 1. Составьте ионно-молекулярные и молекулярные уравнения гидролиза солей: a) KCN; б) Na2CO3; в) ZnSO4. Определите реакцию среды растворов этих солей.

Решение, а) Цианид калия KCN — соль слабой одноосновной кислоты (см. табл. 9) HCN и сильного основания КОН. При растворении в воде молекулы KCN полностью диссоциируют на катионы K + и анионы CN. Катионы K + не могут связывать ионы ОН воды, так как КОН — сильный электролит. Анионы же CN связывают ионы H + воды, образуя молекулы слабого элекролита HCN. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза:

CN – + H2O ↔ HCN + OH –

или в молекулярной форме

KCN + H2O↔ HCN + KOH

В результате гидролиза в растворе появляется некоторый избыток ионов ОН, поэтому раствор KCN имеет щелочную реакцию( рН > 7).

Таблица 19. Константы и степени диссоциации некоторых слабых электролитов

ЭлектролитыФормулаЧисленные значения констант диссоциацииСтепень диссоциации в 0,1 н. растворе, %
Азотистая кислотаHNO2K= 4,0 · 10 -46,4
Аммиак (гидроксид)NH4OHK= 1,8 · 10 -51,3
Муравьиная кислотаHCOOHK= 1,76 · 10 -44,2
Ортоборная кислотаH3BO3K1= 5,8 · 10 -100,007
K2= 1,8 · 10 -13
K3= 1,6 · 10 -14
Ортофосфорная кислотаH3PO4K1= 7,7 · 10 -327
K2= 6,2 · 10 -8
K3= 2,2 · 10 -13
Сернистая кислотаH2SO3K1= 1,7 · 10 -220,0
K2= 6,2 · 10 -8
Сероводородная кислотаH2SK1= 5,7 · 10 -80,07
K2= 1,2 · 10 -15
Синильная кислотаHCNK= 7,2 · 10 -100,009
Угольная кислотаH2CO3K1= 4,3 · 10 -70,17
K2= 5,6 · 10 -11
Уксусная кислотаCH3COOHK= 1,75 · 10 -51,3
Фтороводородная кислотаHFK= 7,2 · 10 -48,5
Хлорноватистая кислотаHClOK= 3,0 · 10 -80,05

б) Карбонат натрия Na2CO3 — соль слабой многоосновной кислоты и сильного основания. В этом случае анионы соли CO3 2- , связывая водородные ионы воды, образуют анионы кислой соли НСО3, а не молекулы Н2СО3, так как ионы НСО3 диссоциируют гораздо труднее, чем молекулы Н2СО3. В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по аниону. Ионно-молекулярное уравнение гидролиза

или в молекулярной форме

В растворе появляется избыток ионов ОН, поэтому раствор Na2CO3 имеет щелочную реакцию (рН > 7).

в) Сульфат цинка ZnSO4 — соль слабого многокислотного основания Zn(OH)2 и сильной кислоты H2SO4. В этом случае катионы Zn 2+ связывают гидроксильные ионы воды, образуя катионы основной соли ZnOH + . Образования молекул Zn(OH)2 не происходит, так как ионы ZnOH + диссоциируют гораздо труднее, чем молекулы Zn(OH)2. В обычных условиях гидролиз идет по первой ступени. Соль гидролизуется по катиону. Ионно-молекулярное уравнение гидролиза

Zn 2+ + H2O ↔ ZnOH + + H +

или в молекулярной форме

В растворе появляется избыток ионов водорода, поэтому раствор ZnSO4 имеет кислую реакцию (рН 3+ + H2O ↔ AlOH 2+ + H +

Если растворы этих солей находятся в одном сосуде, то идет взаимное усиление гидролиза каждой из них, ибо ионы H + и ОH образуют молекулу слабого электролита Н2O. При этом гидро­литическое равновесие сдвигается вправо и гидролиз каждой из взятых солей идет до конца с образованием А1(ОН)3 и СО22СО3). Ионно-молекулярное уравнение:

Написание в молекулярной и в ионно-молекулярной форме уравнения гидролиза по каждой ступени

Задача 586.
Указать, какие из перечисленных ниже солей подвергаются гидролизу: ZnBr2, K2S, Fe2(SO4)3, MgSO4, Cr(NO3)3, K2CO3, Na3PO4, CuCl2. для каждой из гидролизующихся солей написать в молекулярной и в ионно-молекулярной форме уравнения гидролиза по каждой ступени, указать реакцию водного раствора соли.
Решение:
а) ZnBr2 — соль слабого двухкислотного основания и сильной кислоты, поэтому гидролиз будет протекать по катиону в две ступени:

I ступень:
Zn 2+ + H2O ⇔ ZnOH + + H + ;
ZnBr2 + H2O ⇔ ZnOHBr + HBr.

Так как при гидролизе образуется избыток ионов H+, то раствор соли будет иметь кислую среду, рН

б) K2S — соль сильного основания и слабой двухосновной кислоты, поэтому гидролиз протекает по аниону в две ступени:

I ступень:
S 2- + H2O⇔ HS — + OH — ;
K2S + H2O ⇔ KHS + KOH-.

Так как при гидролизе образуется избыток ионов , то раствор соли будет иметь щелочную среду, рН > 7.

в) Fe2(SO4)3 — соль слабого основания и сильной кислоты гидролизуется по катиону, так как катион Fe 3+ трёхзарядный, то гидролиз может протекать по трём ступеням:

Так как при гидролизе образуется избыток ионов , то реакция среды раствора соли будет кислой, рН

г) MgSO4 — соль сильного основания и сильной кислоты, поэтому гидролизу не подвергается.

д) Cr(NO3)3 — соль слабого основания и сильной кислоты, гидролиз проходит по катиону. Так как катион Cr3+, то гидролиз соли может проходить по трём ступеням:

Так как при гидролизе образуется избыток ионов , то реакция среды раствора соли будет кислой, рН

е) K2CO3 — соль сильного основания и слабой двухосновной кислоты, поэтому гидролиз протекает по аниону. Так как ион CO3 2- двухзарядный, то гидролиз соли может протекать по двум ступеням:

Так как при гидролизе образуется избыток ионов OH-, то реакция среды будет щелочная, рН > 7.

ж) Na3PO4 — соль сильного основания и слабой трёхосновной кислоты, поэтому гидролиз протекает по аниону. Так как ион трёхзарядный, то гидролиз соли может протекать по трём ступеням:

Так как при гидролизе образуется избыток ионов OH — , то реакция среды будет щелочная, рН > 7.

з) CuCl2 — соль слабого основания и сильной кислоты, поэтому гидролизуется по катиону. Так как ион Cu 2+ двухзарядный, то гидролиз будет протекать по двум ступеням:

I ступень:
Cu 2+ + H2O ⇔ CuOH + + H + ;
CuCl2 + H2O ⇔ CuOHCl + HCl.

Так как при гидролизе образуется избыток ионов Cu 2+ , то реакция среды будет кислая, рН


источники:

http://farmf.ru/lekcii/gidroliz-solej-obrazovannyh-kislotoj-i-osnovaniem/

http://buzani.ru/zadachi/khimiya-glinka/1196-stupeni-gidroliza-soli-zadachi-586