Напишите уравнения реакций деполимеризации полиэтилена

Деполимеризация полиэтилена

РЕФЕРАТ ПО дисциплине «ОСНОВЫ РЕСУРСОСБЕРЕГАЮЩИХ И ПРИРОДООХРАННЫХ ТЕХНОЛОГИЙ В ПЕРЕРАБОТКЕ ПЛАСТМАСС»

Тема: Получение мономеров из полимерных отходов. Виды полимерных отходов пригодные для деполимеризации. Целесообразность этой «химической » переработки.

Студент группы ХЕМО 11-16А. М. Танташев
Преподаватель:О. Б. Ушакова

Деполимеризация — процесс превращения полимера в мономер или смесь мономеров. Все полимеры подвержены деполимеризации при высоких температурах, как следствие роста энтропии. Это химический процесс, связанный с разрывом молекулярных цепей полимера, который применяется для придания материалу новых свойств.[1]

Для отдельных видов отходов полимеров рациональными являются различные типы химической и термической переработки, заключающейся в конверсии исходных полимеров с образованием сырья для их производства или других ценных продуктов. Деполимеризация может намеренно применяться для утилизации отходов термопластов в целях получения мономеров и возвращения их в цикл синтеза полимеров. Продукты термической деструкции некоторых промышленных полимеров приведены в таблице:

[2]

Разрыв химических связей между атомами углерода может проходит по двум механизмам:

1) С внутримолекулярной миграцией атомов водорода, в результате которой образуются два осколка цепи: один с насыщенным концевым звеном, а другой с ненасыщенным. Эти так называемые случайные разрывы химических связей характерны , например для полиэтилена:

2) С разрывом цепи не в случайных местах, а у концов макромолекулы в результате, которого образуются мономеры или продукты, близкие по молекулярному весу к мономерам. Такая деструкция характерна для полистирола. Процесс идет уже при комнатной температуре и при повышении температуры скорость деполимеризации возрастает. [3]

Деполимеризация полиэтилена

Деполимеризация полиэтилена является обратимым процессом и, в ряде случаев, может применяться при изготовлении или соединении различных изделий.Фактически, данный процесс связан с размягчением материала, который затем может приобрести изначальную плотность и твердость. При деполимеризации полиэтилена наблюдается снижение молекулярного веса вещества и исчезновение летучих веществ, к которым относятся водород и двуокись углерода, при протекании данного процесса понижается вязкость вещества, а, в ряде случаев, увеличивается молекулярных вес. Процесс деполимеризации полиэтилена может происходить под воздействием тепла, света или других внешних воздействий. Следует отметить, что в случае не соблюдения условий проведения химической реакции, полимерный материал может разрушиться или потерять целый ряд своих свойств. Далеко не всегда процессы полимеризации могут быть обратимы, поэтому необходимо тщательно соблюдать условия проведения данной реакции. Известно, что под воздействием света различные виды полиэтилена могут довольно быстро разрушаться, при хранении данного вида полимерного материала на свету за 1 — 2 года пластик или пленка могут полностью превратиться в труху, поэтому при изготовлении полиэтилена используются различные присадки, позволяющие предотвратить деструкцию полиэтилена под воздействием света. В настоящее время многие ведущие химические концерны тщательно изучают процессы деполимеризации полиэтилена для того чтобы разработать новые методики защиты полимерных материалов от различных внешних воздействий. Кроме того, изучение данных процессов позволяет получить обилие информации, которая может быть использована при создании новых материалов. При проведении различных экспериментов, связанных с деполимеризацией полиэтилена, применяются разные современные методы исследований, которые могут быть связаны с использованием дорогостоящей аппаратуры. Кроме того, при проведении данных исследований активно применяются различные методы математического анализа и современное программное обеспечение, которое позволяет не только предсказать, но и обработать полученные результаты.

§ 4. Алкены. Этилен

Как вы уже знаете, при дегидрировании этана образуется этилен — родоначальник гомологического ряда алкенов.

Потеря двух атомов водорода приводит к образованию между атомами углерода не одинарной, а двойной связи:

Так как валентности атомов углерода в этилене и его гомологах не до предела насыщены атомами водорода, то такие соединения называют непредельными.

Алкены — это непредельные углеводороды, содержащие в молекуле, кроме одинарных связей, одну двойную углерод-углеродную связь. Состав их отражает общая формула CnH2n.

Если сравнить общие формулы алканов и алкенов, нетрудно заметить, что их состав отличается на два атома водорода:

Принадлежность углеводорода к классу алкенов отражают родовым суффиксом -ей в его названии. Этилен — родоначальник гомологического ряда алкенов (табл. 3).

Таблица 3 Гомологический ряд этилена

Строение молекулы этилена представлено на рисунке 14. Нетрудно заметить, что молекула этилена имеет плоскостное строение. Аналогично и у всех алкенов по месту расположения двойной связи фрагмент молекулы будет иметь плоскостное строение.

Рис. 14.
Модели молекулы этилена:
1 — масштабная; 2 — шаростержневая

Начиная с третьего члена гомологического ряда алкенов, содержащего в молекуле четыре атома углерода, появляется изомерия углеродного скелета и изомерия положения кратной связи:

Для алкенов характерна межклассовая изомерия с углеводородами другого класса, имеющего такую же общую формулу CnH2n, — циклоалканами. Особенностью химического строения циклоалканов является наличие замкнутой цепочки атомов углерода — цикла, например:

Особенности построения названий алкенов состоят в том, что главная цепь атомов углерода должна обязательно включать двойную С=С-связь, и ее нумерацию проводят с того конца главной цепи, к которому эта связь ближе. В названии углеводорода, оканчивающегося на -ен, цифрой указывают номер того атома углерода, от которого начинается двойная углерод-углеродная связь. Остальные правила формирования названий алкенов остаются такими же, как и для алканов. Например:

В промышленности этилен получают крекингом (расщеплением) продуктов переработки нефти, например керосина.

В лабораторных условиях этилен получают дегидратацией этилового спирта:

Реакция дегидратации — это процесс отщепления молекулы воды от молекулы органического соединения.

Этилен — это бесцветный газ без запаха, почти нерастворим в воде. Он обладает способностью ускорять созревание плодов и овощей, что используют в овощехранилищах, куда закладывают недозрелую плодоовощную продукцию.

Рассмотрим химические свойства алкенов на примере этилена.

Наличие в молекулах алкенов двойной С=С-связи обусловливает их химические свойства.

Для алкенов, как для непредельных углеводородов, характерны реакции присоединениях 1) водорода (гидрирование), 2) воды (гидратация), 3) галогенов (гало-генирование) и др. При этом одна из двух связей между атомами углерода разрывается, и оба атома присоединяют атомы или группу атомов реагента. В результате алкен превращается в алкан или его производное:

Последняя реакция применяется для обнаружения соединений с кратной (двойной или тройной) углерод-углеродной связью, т. е. является качественной на кратную связь. При этом происходит обесцвечивание бромной воды (раствора брома в воде) (рис. 15). Аналогичная реакция с хлором имеет практическое значение, поскольку приводит к образованию важного продукта — 1,2-дихлорэтана, используемого в качестве растворителя и для получения пластмасс.

Рис. 15.
Обесцвечивание бромной воды этиленом (качественная реакция на кратную связь)

Для гомологов этилена, например пропилена, реакция гидратации протекает в соответствии с правилом В. В. Марковникова.

При присоединении полярных молекул, например галогеноводородов или воды, к алкену водород преимущественно присоединяется к атому углерода при двойной связи, с которым соединено большее число атомов водорода:

Аналогично гидратации протекает и реакция присоединения галогеноводородов к алкенам, например:

Сущность любой химической реакции заключается в образовании новых молекул из тех же самых атомов, из которых образованы исходные вещества. В ходе любой реакции одни связи разрываются, другие — образуются. Разрыв ковалентной связи можно рассматривать как процесс, обратный ее образованию. Следовательно, при этом возможны два направления разрыва.

Гемолитический разрыв приводит к тому, что оба атома, ранее связанные ковалентной связью, получают по одному электрону, превращаясь в частицы с неспаренным электроном — свободные радикалы.

Подобный тип разрыва химической связи и, соответственно, радикальный механизм реакции наблюдается при уже рассмотренном процессе галогенирования метана.

Гетеролитический разрыв осуществляется таким образом, что один из атомов получает оба электрона, служившие ранее общей электронной парой. Такой тип разрыва связи приводит к образованию заряженных частиц — ионов:

Подобный тип разрыва химической связи и, соответственно, ионный механизм реакции наблюдается в процессе присоединения галогеноводорода к алкенам.

Как известно, химическая связь в молекуле хлорово-дорода является полярной. В условиях реакции молекула НС1 распадается на ионы Н + и С1 — :

Эти ионы и присоединяются к атомам углерода за счет гетеролитического разрыва двойной связи в молекуле алкена.

Особым случаем реакций присоединения является реакция полимеризации.

Реакция полимеризации — это химический процесс соединения множества исходных молекул низкоМблекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера.

Полимер — это высокомолекулярное соединение, молекулы которого состоят из множества одинаковых структурных звеньев.

Полимеризацию этилена можно отразить с помощью следующей схемы:

или с помощью следующего уравнения:

Полимеризацию проводят в присутствии инициаторов, например перекисных соединений, которые являются источниками свободных радикалов. Перекис-ными соединениями называют вещества, молекулы которых включают группу —О—О—. Простейшим перекисным соединением является пероксид водорода Н-О-О-Н.

Вещество, вступающее в реакцию полимеризации, называют мономером, продукт такой реакции — полимером, формулу в скобках в уравнении такой реакции — структурным звеном, а индекс n — степенью полимеризации, которая показывает, сколько структурных звеньев образуют молекулу полимера.

В настоящее время нашу жизнь невозможно представить без полимеров. Изделия из них все в большей степени вытесняют из нашего быта изделия, изготовленные из природных материалов, поскольку полимеры обладают самыми разнообразными свойствами, сравнительно дешевы, легко обрабатываются.

Полиэтилен представляет собой важнейшую пластмассу, которая находит широкое применение в народном хозяйстве (рис. 16).

Рис. 16.
Применение полиэтилена:
1 — медицинское оборудование; 2 — предметы домашнего обихода; 3 — пленка для парников; 4 — трубы и шланги; 5 — клейкая лента; 6 — упаковочная пленка; 7 — пакеты; 8 — детали

В лабораторных условиях с помощью реакции деполимеризации технического полиэтилена (она является обратной процессу полимеризации), например, из полиэтиленовых гранул, можно получить этилен (рис. 17):

Рис. 17.
Получение этилена деполимеризацией полиэтилена

На кратную связь, кроме реакции обесцвечивания бромной воды, существует еще одна качественная реакция — реакция обесцвечивания раствора перманганата калия КМп04 (рис. 18), уравнение которой

Рис. 18. Обесцвечивание раствора перманганата калия этиленом (качественная реакция на кратную связь)

Этилен — важнейший продукт химической промышленности, так как используется для получения других ценных веществ и материалов (рис. 19).

Рис. 19.
Применение этилена:
1 — в овощехранилищах для ускорения созревания плодов; 2—6 — производство органических соединений (полиэтилена 2, растворителей 3, уксусной кислоты 4, спиртов 5, 6)

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e35a241d8a91646 • Your IP : 85.95.188.35 • Performance & security by Cloudflare


источники:

http://tepka.ru/himiya_10/4.html

http://gomolog.ru/reshebniki/9-klass/kuznecova-2019/56/2.html