Напишите уравнения реакций водорода с азотом серой углеродом

Уравнения химических реакций взаимодействия водорода : а)с серой ; б)с хлором ; в)с азотом ; г)с углеродом?

Химия | 5 — 9 классы

Уравнения химических реакций взаимодействия водорода : а)с серой ; б)с хлором ; в)с азотом ; г)с углеродом.

Условия протекания реакций.

A) H2 + S = H2S — сероводород

б) H2 + CL2 = HCl — соляная кислота (хлороводород)

в) H2 + N = NH3 — аммиак (не совсем уверена в этой реакции)

г) 2H2 + C = CH4 (взаимодействует с сажей при нагревании).

Помогите сделать уравнения химических реакций, пожалуйста?

Помогите сделать уравнения химических реакций, пожалуйста.

1. хлора с водородом

Азота с натрием

Водорода с углеродом

Кислорода с калием.

Напишите уравнение реакции между серой и водородом?

Напишите уравнение реакции между серой и водородом.

Укажите при каких условиях эту реакцию можно осуществить.

Какой вид химической связи в молекуле сероводорода?

Напишите уравнения химических реакций, с помощью которых можно получить хлорид аммония, исходя из водорода, хлора и азота?

Напишите уравнения химических реакций, с помощью которых можно получить хлорид аммония, исходя из водорода, хлора и азота.

Помогите сделать уравнения химических реакций, пожалуйста?

Помогите сделать уравнения химических реакций, пожалуйста.

1) бром с водородом

2) сера с натрием

3) углерод с хлором

4) магния с озотом.

№1 Составьте уравнения химических реакций между а)серой и хлором б)углеродом и серой?

№1 Составьте уравнения химических реакций между а)серой и хлором б)углеродом и серой.

Химическая реакция, признаки, условия их протекания?

Химическая реакция, признаки, условия их протекания.

Экзотермические и эндотермические реакции.

Закон сохранения массы вещества.

Составить уравнения хим?

Составить уравнения хим.

Реакций водорода : — с кислородом и хлором (Сl2) ; — с оксидом никеля ; — с серой и азотом ; — с оксидом железа.

Напишите уравнения химических реакций, соответствующих схеме, и укажите условия их протекания ?

Напишите уравнения химических реакций, соответствующих схеме, и укажите условия их протекания :

Задача : Напишите уравнения реакций : — магния с азотом — железа с хлором — натрия с серой — кальция с водородом?

Задача : Напишите уравнения реакций : — магния с азотом — железа с хлором — натрия с серой — кальция с водородом.

Составить химические уравнения кальция с кислородом, водородом, азотом, хлором, серой?

Составить химические уравнения кальция с кислородом, водородом, азотом, хлором, серой.

На этой странице находится вопрос Уравнения химических реакций взаимодействия водорода : а)с серой ; б)с хлором ; в)с азотом ; г)с углеродом?, относящийся к категории Химия. По уровню сложности данный вопрос соответствует знаниям учащихся 5 — 9 классов. Здесь вы найдете правильный ответ, сможете обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С помощью автоматического поиска на этой же странице можно найти похожие вопросы и ответы на них в категории Химия. Если ответы вызывают сомнение, сформулируйте вопрос иначе. Для этого нажмите кнопку вверху.

А — 6 Б — 4 В — 3 Г — 1 N — 2энерго. Уровня He — 1 энерго уровень Si — 3эн уровня Ti — 4 эн уровня Zn — 5 эн уровня.

C + 2H2 = CH4⇒CH4 + Br2 = CH3Br + HBr⇒CH3Br + CH3Br + Na = C2H6⇒C2H6 + Br2 = C2H5Br + HBr⇒C2H5Br + C2H5Br + 2Na = C4H10 + 2NaBr⇒C4H10 + O2 = 2CH3COOH 2CH4(крекинг) = С2Н2 + 3Н2 С2Н6(крекинг) = C2H4 + H2 C2H4(кркеинг) = C2H2 + H2 2C4H10 + 13O2 = 8CO2 ..

Окей. Смотри вкладыш.

Решение задачи находится на фото.

2СH4 — > CH = — CH + 3H2 ( t = 1500) CH = — CH + H2 — > CH2 = CH2 (t, kat) CH2 = CH2 + H2 — > CH3 — CH3 (t, kat) 2C2H6 + 7O2 — >4CO2 + 6H2O 250 г Х г C6H5NO2 + 3H2 — > C6H5NH2 + 2H2O n = 1 моль n = 1 моль М = 123 г / моль М = 93 г / моль m = 123 г m ..

C6H5NO2 + 6H = C6H5NH2 + 2H2O n(C6H5NO2) = m(C6H5NO2) / M(C6H5NO2) = 250гр / 123г / моль = примерно = = 2, 03 моль n(C6H5NO2) = n(C6H5NH2) = примерно = 2, 03 моль m(C6H5NH2) = n(C6H5NH2) x M(C6H5NH2) = 2, 03 моль х 93гр / моль = примерно = 189 гр Отв..

1) Растворить 2) Отфильтровать 3) Выпарить.

Химические свойства простых веществ-неметаллов: водорода, кислорода, галогенов, серы, азота, фосфора, углерода, кремния

Водород

Химический элемент водород занимает особое положение в периодической системе Д.И. Менделеева. По числу валентных электронов, способности образовывать в растворах гидратный ион H + он сходен с щелочными металлами, и его следует поместить в I группу. По числу электронов, необходимых для завершения внешней электронной оболочки, значению энергии ионизации, способности проявлять отрицательную степень окисления, малому атомному радиусу водород следует поместить в VII группу периодической системы. Таким образом, размещение водорода в той или иной группе периодической системы в значительной мере условно, но в большинстве случаев его помещают в VII группу.

Электронная формула водорода 1s 1 . Единственный валентный электрон находится непосредственно в сфере действия атомного ядра. Простота электронной конфигурации водорода отнюдь не означает, что химические свойства этого элемента просты. Напротив, химия водорода во многом отличается от химии других элементов. Водород в своих соединениях способен проявлять степени окисления +1 и –1.

Существует большое количество методов получения водорода. В лаборатории его получают взаимодействием некоторых металлов с кислотами, например:

Водород можно получить электролизом водных растворов серной кислоты или щелочей. При этом происходит процесс выделения водорода на катоде и кислорода на аноде.

В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива и коксового газа.

Простое вещество водород, H2, представляет собой горючий газ без цвета и запаха. Температура кипения –252,8 °C. Водород в 14,5 раза легче воздуха, мало растворим в воде.

Молекула водорода устойчива, обладает большой прочностью. Из-за высокой энергии диссоциации распад молекул H2 на атомы происходит в заметной степени лишь при температуре выше 2000 °C.

Для водорода возможны положительная и отрицательная степени окисления, поэтому в химических реакциях водород может проявлять как окислительные, так и восстановительные свойства. В тех случаях, когда водород выступает в качестве окислителя, он ведёт себя подобно галогенам, образуя аналогичные галогенидам гидриды (гидридами называют группу химических соединений водорода с металлами и менее электроотрицательными, чем он, элементами):

По окислительной активности водород существенно уступает галогенам. Поэтому ионный характер проявляют лишь гидриды щелочных и щёлочноземельных металлов. Ионные, а также комплексные гидриды, например, являются сильными восстановителями. Их широко используют в химических синтезах.

В большинстве реакций водород ведёт себя как восстановитель. При нормальных условиях водород не взаимодействует с кислородом, однако при поджигании реакция протекает со взрывом:

Смесь двух объёмов водорода с одним объёмом кислорода называют гремучим газом. При контролируемом горении происходит выделение большого количества тепла, и температура водородно-кислородного пламени достигает 3000 °С.

Реакция с галогенами протекает в зависимости от природы галогена по-разному:

С фтором такая реакция идёт со взрывом даже при низких температурах. С хлором на свету реакция также протекает со взрывом. С бромом реакция идёт значительно медленнее, а с йодом не доходит до конца даже при высокой температуре. Механизм этих реакций радикальный.

При повышенной температуре водород взаимодействует с элементами VI группы — серой, селеном, теллуром, например:

Очень важной является реакция водорода с азотом. Эта реакция обратима. Для смещения равновесия в сторону образования аммиака используют повышенное давление. В промышленности данный процесс осуществляют при температуре 450—500 °С, давлении 30 МПа, в присутствии различных катализаторов:

Водород восстанавливает многие металлы из оксидов, например:

Данную реакцию используют для получения некоторых чистых металлов.

Огромную роль играют реакции гидрирования органических соединений, которые широко используют как в лабораторной практике, так и в промышленном органическом синтезе.

Сокращение природных источников углеводородного сырья, загрязнение окружающей среды продуктами сгорания топлива повышают интерес к водороду как к экологически чистому топливу. Вероятно, водород будет играть важную роль в энергетике будущего.

В настоящее время водород широко применяют в промышленности для синтеза аммиака, метанола, гидрогенизации твёрдого и жидкого топлива, в органическом синтезе, для сварки и резки металлов и т. д.

Вода H2O, оксид водорода, является важнейшим химическим соединением. При нормальных условиях вода — бесцветная жидкость, без запаха и вкуса. Вода — самое распространённое вещество на поверхности Земли. В человеческом организме содержится 63—68 % воды.

Вода является стабильным соединением, её разложение на кислород и водород происходит лишь под действием постоянного электрического тока или при температуре около 2000 °C:

Вода непосредственно взаимодействует с металлами, стоящими в ряду стандартных электронных потенциалов до водорода. Продуктами реакции в зависимости от природы металла могут быть соответствующие гидроксиды и оксиды. Скорость реакции в зависимости от природы металла также изменяется в широких пределах. Так, натрий вступает в реакцию с водой уже при комнатной температуре, реакция сопровождается выделением большого количества тепла; железо реагирует с водой при температуре 800 °С.

Вода может вступать в реакцию со многими неметаллами, так, при обычных условиях вода обратимо взаимодействует с хлором:

При повышенной температуре вода взаимодействует с углем с образованием так называемого синтез-газа — смеси оксида углерода (II) и водорода:

При обычных условиях вода реагирует со многими основными и кислотными оксидами с образованием оснований и кислот соответственно:

Реакция идёт до конца, если соответствующее основание или кислота растворимы в воде.

Кислород

Химический элемент кислород расположен во 2-м периоде VIA подгруппе. Его электронная формула 1s 2 2s 2 2p 4 . Простое вещество кислород — газ без цвета и запаха, мало растворим в воде. Сильный окислитель. Его характерные химические свойства:

Реакции простых и сложных веществ с кислородом часто сопровождаются выделением тепла и света. Такие реакции называют реакциями горения.

Кислород широко используется практически во всех областях химической промышленности: для производства чугуна и стали, производства азотной и серной кислоты. Огромное количество кислорода потребляется в процессах тепловой энергетики.

В последние годы обострилась проблема сохранения запасов кислорода в атмосфере. До настоящего времени единственным источником, пополняющим запасы атмосферного кислорода, является жизнедеятельность зелёных растений.

Галогены

В VIIА группе находятся фтор, хлор, бром, йод и астат. Эти элементы называют также галогенами (в переводе — рождающие соли).

На внешнем энергетическом уровне всех этих элементов находятся 7 электронов (конфигурации ns 2 np 5 ), наиболее характерные степени окисления –1, +1, +5 и +7 (кроме фтора).

Атомы всех галогенов образуют простые вещества состава Hal2.

Галогены являются типичными неметаллами. При переходе от фтора к астату происходит увеличение радиуса атома, неметаллические свойства падают, происходит уменьшение окислительных и увеличение восстановительных свойств.

Физические свойства галогенов приведены в таблице 8.

В химическом отношении галогены весьма активны. Их реакционная способность убывает с увеличением порядкового номера. Некоторые характерные для них реакции приведены ниже на примере хлора:

Водородные соединения галогенов — галогеноводороды имеют общую формулу HHal. Их водные растворы являются кислотами, сила которых возрастает от HF к HI.

Галогенводородные кислоты (за исключением HF) способны реагировать с такими сильными окислителями, как KMnO4, MnO2, K2Cr2O7, CrO3 и другими, с образованием галогенов:

Галогены образуют ряд оксидов, например, для хлора известны кислотные оксиды состава Cl2O, ClO2, ClO3, Cl2O7. Все эти соединения получают косвенными методами. Они являются сильными окислителями и взрывоопасными веществами.

Наиболее устойчивым из оксидов хлора является Cl2O7. Оксиды хлора легко реагируют с водой, образуя кислородсодержащие кислоты: хлорноватистую HClO, хлористую HClO2, хлорноватую HClO3 и хлорную HClO4, например:

В промышленности бром получают при вытеснении хлором из бромидов, а в лабораторной практике — окислением бромидов:

Простое вещество бром является сильным окислителем, легко вступает в реакции со многими простыми веществами, образуя бромиды; вытесняет йод из йодидов.

Простое вещество йод, I2, представляет собой чёрные с металлическим блеском кристаллы, которые возгоняются, т. е. переходят в пар, минуя жидкое состояние. Йод мало растворим в воде, но довольно хорошо растворяется в некоторых органических растворителях (спирт, бензол и т. д.).

Йод является довольно сильным окислителем, способным к окислению ряда металлов и некоторых неметаллов.

Химический элемент сера расположен в 3-м периоде VIA подгруппе. Его электронная формула 1s 2 2s 2 2p 6 3s 2 3p 4 . Простое вещество сера — неметалл жёлтого цвета. Существует в двух аллотропных модификациях: ромбическая и моноклинная и в аморфной форме (пластическая сера). Проявляет как окислительные, так и восстановительные свойства. Возможны реакции диспропорционирования. Её характерные химические свойства:

Сера образует летучее водородное соединение — сероводород. Его водный раствор представляет собой слабую двухосновную кислоту. Для сероводорода характерны также восстановительные свойства:

Сера образует два кислотных оксида: оксид серы (IV) SO2 и оксид серы (VI) SO3. Первому соответствует слабая, существующая только в растворе сернистая кислота H2SO3; второму — сильная двухосновная серная кислота H2SO4. Концентрированная серная кислота проявляет сильные окислительные свойства. Ниже приведены характерные для этих соединений реакции:

Серная кислота в больших количествах производится в промышленности. Все промышленные методы производства серной кислоты основаны на первоначальном получении оксида серы (IV), его окислении в оксид серы (VI) и взаимодействии последнего с водой.

Химический элемент азот — находится во 2-м периоде, V группе, главной подгруппе периодической системы Д.И. Менделеева. Его электронная формула 1s 2 2s 2 2p 3 . В своих соединениях азот проявляет степени окисления –3, –2, +1,+2, +3, +4, +5.

Простое вещество азот — газ без цвета и запаха, малорастворимый в воде. Типичный неметалл. В обычных условиях химически мало активен. При нагревании вступает в окислительно-восстановительные реакции.

Азот образует оксиды состава N2O, NO, N2O3, NO2, N2O4, N2O5. При этом N2O, NO, являются несолеобразующими оксидами, для которых характерны окислительно-восстановительные реакции; N2O3, NO2, N2O4, N2O5 — солеобразующие кислотные оксиды, для которых также характерны окислительно-восстановительные реакции, в том числе реакции диспропорционирования.

Химические свойства оксидов азота:

Азот образует летучее водородное соединение состава NH3, аммиак. При обычных условиях это бесцветный газ с характерным резким запахом; температура кипения –33,7 °C, температура плавления –77,8 °C. Аммиак хорошо растворим в воде (700 объёмов NH3 на 1 объём воды при 20 °C) и ряде органических растворителей (спирт, ацетон, хлороформ, бензол).

Химические свойства аммиака:

Азот образует азотистую кислоту HNO2 (в свободном виде известна только в газовой фазе или растворах). Это слабая кислота, её соли называют нитритами.

Кроме того, азот образует очень сильную азотную кислоту HNO3. Особенностью азотной кислоты является то, что при её окислительно-восстановительных реакциях с металлами не выделяется водород, а образуются различные оксиды азота или соли аммония, например:

В реакциях с неметаллами концентрированная азотная кислота ведёт себя как сильный окислитель:

Также азотная кислота способна окислять сульфиды, йодиды и т. д.:

Подчеркнём ещё раз. Запись уравнений окислительно-восстановительных реакций с участием HNO3 обычно условна. Как правило, в них указывают лишь продукт, образующийся в большем количестве. В некоторых из таких реакций в качестве продукта восстановления обнаружен водород (реакция разбавленной HNO3 с Mg и Mn).

Соли азотной кислоты называют нитратами. Все нитраты хорошо растворимы в воде. Нитраты термически нестабильны и при нагревании легко разлагаются.

Особые случаи разложения нитрата аммония:

Общие закономерности термического разложения нитратов:

Фосфор

Химический элемент фосфор расположен в 3-м периоде, V группе, главной подгруппе периодической системы Д.И. Менделеева. Его электронная формула 1s 2 2s 2 2p 6 3s 2 3p 3 .

Простое вещество фосфор существует в виде нескольких аллотропных модификаций (аллотропия состава). Белый фосфор Р4, при комнатной температуре мягкий, плавится, кипит без разложения. Красный фосфор Pn, состоит из полимерных молекул разной длины. При нагревании возгоняется. Чёрный фосфор состоит из непрерывных цепей Pn, имеет слоистую структуру, по внешнему виду похож на графит. Наиболее реакционноспособным является белый фосфор.

В промышленности фосфор получают прокаливанием фосфата кальция с углём и песком при 1500 °C:

В приведённые ниже реакции вступают любые модификации фосфора, если нет особых оговорок:

Фосфор образует летучее водородное соединение — фосфин, PH3. Это газообразное соединение с крайне неприятным резким запахом. Его соли в отличие от солей аммиака существуют только при низких температурах. Фосфин легко вступает в окислительно-восстановительные реакции:

Фосфор образует два кислотных оксида: P2O3 и P2O5. Последнему соответствует фосфорная (ортофосфорная) кислота H3PO4. Это трёхосновная кислота средней силы, которая образует три ряда солей: средние (фосфаты) и кислые (гидро- и дигидрофосфаты). Ниже приведены уравнения химических реакций, характерные для данных соединений:

Углерод

Химический элемент углерод расположен во 2-м периоде, главной подгруппе IV группы периодической системы Д.И. Менделеева, его электронная формула 1s 2 2s 2 2p 2 , наиболее характерные степени окисления –4, +2, +4.

Для углерода известны стабильные аллотропные модификации (графит, алмаз, аллотропия строения), в виде которых он встречается в природе, а также полученные лабораторным путём карбин и фуллерены.

Алмаз — кристаллическое вещество с атомной координационной кубической решёткой. Каждый атом углерода в алмазе находится в состоянии sp 3 -гибридизации и образует равноценные прочные связи с четырьмя соседними атомами углерода. Это обуславливает исключительную твёрдость алмаза и отсутствие в обычных условиях электропроводности.

В графите атомы углерода находятся в состоянии sp 2 -гибридизации. Атомы углерода объединены в бесконечные слои из шестичленных колец, стабилизированные ω-связью, делокализованные в пределах всего слоя. Этим объясняется металлический блеск и электрическая проводимость графита. Углеродные слои объединены в кристаллическую решётку в основном за счёт межмолекулярных сил. Прочность химических связей в плоскости макромолекулы значительно больше, чем между слоями, поэтому графит довольно мягок, легко расслаивается и химически несколько активнее алмаза.

В состав древесного угля, сажи и кокса входят очень мелкие кристаллы графита с очень большой поверхностью, которые называют аморфным углеродом.

В карбине атом углерода находится в состоянии sp-гибридизации. Его кристаллическая решётка построена из прямолинейных цепочек двух видов:

Карбин представляет собой порошок чёрного цвета с плотностью 1,9—2,0 г/см 3 , является полупроводником.

Аллотропные модификации углерода могут переходить друг в друга при определённых условиях. Так, при нагревании без доступа воздуха при температуре 1750 °С алмаз переходит в графит.

В нормальных условиях углерод весьма инертен, однако при высоких температурах он вступает в реакции с различными веществами, причём самой реакционноспособной формой является аморфный углерод, менее активен графит, а самый инертный — алмаз.

Реакции, характерные для углерода:

Углерод устойчив к действию кислот и щелочей. Только горячие концентрированные азотная и серная кислоты могут окислить его до оксида углерода (IV):

Углерод восстанавливает многие металлы из их оксидов. При этом в зависимости от природы металла образуются либо чистые металлы (оксиды железа, кадмия, меди, свинца), либо соответствующие карбиды (оксиды кальция, ванадия, тантала), например:

Углерод образует два оксида: CO и CO2.

Оксид углерода (II) CO (угарный газ) представляет собой бесцветный газ без запаха, плохо растворимый в воде. Это соединение является сильным восстановителем. Он горит на воздухе с выделением большого количества теплоты, благодаря чему CO является хорошим газообразным топливом.

Оксид углерода (II) восстанавливает многие металлы из их оксидов:

Оксид углерода (II) является несолеобразующим оксидом, с водой и щелочами он не реагирует.

Оксид углерода (IV) CO2 (углекислый газ) представляет собой бесцветный, без запаха, негорючий газ, малорастворимый в воде. В технике его обычно получают термическим разложением CaCO3, а в лабораторной практике — действием на CaCO3 соляной кислоты:

Оксид углерода (IV) является кислотным оксидом. Его характерные химические свойства:

Оксиду углерода (IV) соответствует очень слабая двухосновная угольная кислота H2CO3, которая не существует в чистом виде. Она образует два ряда солей: средние — карбонаты, например карбонат кальция CaCO3, и кислые — гидрокарбонаты, например Ca(HCO3)2 — гидрокарбонат кальция.

Карбонаты переходят в гидрокарбонаты под действием избытка углекислого газа в водной среде:

Гидрокарбонат кальция превращается в карбонат под действием гидроксида кальция:

Гидрокарбонаты и карбонаты разлагаются при нагревании:

Кремний

Химический элемент кремний находится в 3-м периоде IVА группе периодической системы Д.И. Менделеева. Его электронная формула 1s 2 2s 2 2p 6 3s 2 3p 2 , наиболее характерные степени окисления –4, +4.

Кремний получают восстановлением его оксида магнием или углеродом в электрических печах, а кремний высокой чистоты — восстановлением SiCl4 цинком или водородом, например:

Кремний может существовать в кристаллической или аморфной форме. В обычных условиях кремний довольно устойчив, причём аморфный кремний более реакционноспособен, чем кристаллический. Для кремния наиболее устойчива степень окисления +4.

Реакции, характерные для кремния:

Кремний не реагирует с кислотами (за исключением HF), пассивируется кислотами-окислителями, но хорошо растворяется в смеси плавиковой и азотной кислот, что можно описать уравнением:

Оксид кремния (IV), SiO2 (кремнезём), в природе встречается в основном в виде минерала кварца. В химическом отношении довольно устойчив, проявляет свойства кислотного оксида.

Свойства оксида кремния (IV):

Кремний образует кислоты переменного содержания SiO2 и H2O. Соединение состава H2SiO3 в чистом виде не выделено, но для упрощения допускается его запись в уравнениях реакций:

Тренировочные задания

1. Водород при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и железом
2) серой и хромом
3) оксидом углерода (II) и соляной кислотой
4) азотом и натрием

2. Верны ли следующие утверждения о водороде?

А. Перекись водорода можно получить сжиганием водорода в избытке кислорода.
Б. Реакция между водородом и серой идёт без катализатора.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

3. Кислород при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом
2) фосфором и цинком
3) оксидом кремния (IV) и хлором
4) хлоридом калия и серой

4. Верны ли следующие утверждения о кислороде?

А. Кислород не реагирует с хлором.
Б. Реакция кислорода с серой даёт SO2.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

5. Фтор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом
2) аргоном и азотной кислотой
3) оксидом углерода (IV) и неоном
4) водой и натрием

6. Верны ли следующие утверждения о фторе?

А. Реакция избытка фтора с фосфором приводит к PF5.
Б. Фтор реагирует с водой.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

7. Хлор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и железом
2) фосфором и серной кислотой
3) оксидом кремния (IV) и неоном
4) бромидом калия и серой

8. Верны ли следующие утверждения о хлоре?

А. Пары хлора легче воздуха.
Б. В заимодействие хлора с кислородом приводит к оксиду хлора (V).

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

9. Бром при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) фосфором и железом
2) фосфором и серной кислотой
3) оксидом кремния (IV) и хлором
4) бромидом калия и серой

10. Верны ли следующие утверждения о броме?

А. Бром не вступает в реакцию с водородом.
Б. Бром вытесняет хлор из хлоридов.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

11. Йод при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом
2) фосфором и кальцием
3) оксидом кремния (IV) и хлором
4) хлоридом калия и серой

12. Верны ли следующие утверждения о йоде?

А. Раствор йода обладает бактерицидными свойствами.
Б. Йод реагирует с хлоридом кальция.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

13. Сера при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) натрием и железом
2) фосфором и оксидом цинком
3) оксидом кремния (IV) и хлором
4) хлоридом калия и бромидом натрия

14. Верны ли следующие утверждения о сере?

А. При сплавлении серы и кальция образуется CaS.
Б. При реакции серы с кислородом образуется SO2.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

15. Азот при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) литием и хлоридом кальция
2) хлором и оксидом кальция
3) оксидом кремния (IV) и хлором
4) литием и кальцием

16. Верны ли следующие утверждения об азоте?

А. В промышленности реакцию азота и водорода осуществляют под высоким давлением в присутствии катализатора.
Б. При взаимодействии азота и натрия образуется Na3N.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

17. Фосфор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) натрием и сульфидом кальция
2) хлором и кислородом
3) оксидом углерода (IV) и серой
4) серой и оксидом цинка

18. Верны ли следующие утверждения о фосфоре?

А. Реакция фосфора с хлором идёт только в присутствии катализатора.
Б. При реакции фосфора с избытком серы образуются только P2S3.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

19. Углерод при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кальцием и сульфатом бария
2) хлором и неоном
3) оксидом фосфора (V) и серой
4) серой и гидроксидом цинка

20. Верны ли следующие утверждения об углероде?

А. При взаимодействии углерода с натрием образуется карбид состава Na2C2.
Б. Углерод реагирует с оксидом кальция с образованием CaC2.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

21. Кремний при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и гидроксидом натрия
2) хлором и неоном
3) оксидом фосфора (V) и серой
4) серой и гидроксидом цинка

22. Верны ли следующие утверждения о кремнии?

А. При взаимодействии кремния с углеродом образуется карбид состава SiC.
Б. Кремний реагирует с магнием с образованием Mg2Si.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

23. Установите соответствие между реагирующими веществами и продуктами реакций.

24. Установите соответствие между реагирующими веществами и продуктами реакций.

25. Установите соответствие между реагирующими веществами и продуктами реакций.

26. Установите соответствие между реагирующими веществами и продуктами реакций.

27. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Cl2 + Fe →
Б) Cl2 + Cr →
В) Cl2 (изб.) + P →

28. Установите соответствие между реагирующими веществами и продуктами реакций.

ПРОДУКТЫ РЕАКЦИИ
1) NaClO3 + NaCl + H2O
2) NaCl + NaClO + H2O
3) NaClO3 + NaCl
4) NaCl + Br2
5) NaClBr

29. Установите соответствие между реагирующими веществами и продуктами реакций.

ПРОДУКТЫ РЕАКЦИИ
1) NaClI
2) NaBrO + NaBr
3) NaBrO3 + NaBr + H2O
4) NaBrO + NaBr + H2O
5) NaBr + I2

30. Установите соответствие между реагирующими веществами и продуктами реакций.

ПРОДУКТЫ РЕАКЦИИ
1) NaBr + NaBrO3 + H2O
2) NaBr + NaBrO + H2O
3) I Br
4) H2SO4 + HBr
5) HBr + SO3

31. Установите соответствие между реагирующими веществами и продуктами реакций.

32. Установите соответствие между реагирующими веществами и продуктами реакций.

33. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) S + Na →
Б) S + HI →
В) S + NaOH →

34. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) S + Cl2 (недост.) →
Б) S + HNO3 (конц.) →
В) S + O2 →+

35. Установите соответствие между реагирующими веществами и продуктами реакций.

36. Установите соответствие между реагирующими веществами и продуктами реакций.

37. Установите соответствие между реагирующими веществами и продуктами реакций.

38. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) P + Br2 (недост.) →
Б) P + Li
В) P + HNO3 (конц.) →

39. Установите соответствие между реагирующими веществами и продуктами реакций.

40. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) C + H2O →
Б) C + HNO3
В) C + S →

41. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Si + O2
Б) Si + S →
В) S i + Mg →

42. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Si + Cl2
Б) Si + C →
В) Si + NaOH →

43. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

44. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

45. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

46. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

47. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

48. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

49. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

50. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

51. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

52. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

53. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

54. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

Водород: химия водорода и его соединений

Водород

Положение в периодической системе химических элементов

Водород расположен в главной подгруппе I группы и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение водорода

Электронная конфигурация водорода в основном состоянии :

+1H 1s 1 1s

Атом водорода содержит на внешнем энергетическом уровне один неспаренный электрон в основном энергетическом состоянии.

Степени окисления атома водорода — от -1 до +1. Характерные степени окисления -1, 0, +1.

Физические свойства

Водород – легкий газ без цвета, без запаха. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью:

Н–Н

Соединения водорода

Основные степени окисления водорода +1, 0, -1.

Типичные соединения водорода:

Степень окисленияТипичные соединения
+1кислоты H2SO4, H2S, HCl и др.

вода H2O и др. летучие водородные соединения (HCl, HBr)

кислые соли (NaHCO3 и др.)

основания NaOH, Cu(OH)2

основные соли (CuOH)2CO3

-1гидриды металлов NaH, CaH2 и др.

Способы получения

Еще один важный промышленный способ получения водорода — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Химические свойства

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов :

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием .

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом .

1.6. Водород горит , взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов . Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например , водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов .

Например , водород взаимодействует с оксидом азота (I):

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Применение водорода

Применение водорода основано на его физических и химических свойствах:

  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);
  • кислородно-водородное пламя применяется для получения высоких температур при сварке металлов;
  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;
  • водород используется для получения аммиака и искусственного жидкого топлива;
  • получение твердых жиров (гидрогенизация).

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Способы получения

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

Например , при взаимодействии натрия с водородом образуется гидрид натрия:

2Na + H2 → 2NaH

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

1. Солеобразные гидриды легко разлагаются водой .

Например , гидрид натрия в водной среде разлагается на гидроксид натрия и водород:

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

Например , гидрид натрия реагирует с соляной кислотой с образованием хлорида натрия и водорода:

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

Например , гидрид натрия окисляется кислородом:

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Летучие водородные соединения

Соединения водорода с неметаллами — летучие водородные соединения.

Строение и физические свойства

Все летучие водородные соединения — газы (кроме воды).

CH4 — метан NH3 — аммиакH2O — вода HF –фтороводород
SiH4 — силанPH3 — фосфин H2S — сероводород HCl –хлороводород
AsH3 — арсин H2Se — селеноводород HBr –бромоводород
H2Te — теллуроводород HI –иодоводород

Способы получения силана

Силан образуется при взаимодействии соляной кислоты с силицидом магния:

Видеоопыт получения силана из силицида магния можно посмотреть здесь.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Например , фосфин образуется при водном гидролизе фосфида кальция:

Или при кислотном гидролизе, например , фосфида магния в соляной кислоте:

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Например , фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина:

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства силана

1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода:

Видеоопыт сгорания силана можно посмотреть здесь.

2. Силан разлагается водой с выделением водорода:

3. Силан разлагается (окисляется) щелочами :

4. Силан при нагревании разлагается :

Химические свойства фосфина

1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами .

Например , фосфин реагирует с йодоводородной кислотой:

Соли фосфония неустойчивые, легко гидролизуются.

2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется:

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Например , азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту.

Серная кислота также окисляет фосфин:

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

Например , хлорид фосфора (III) окисляет фосфин:

2PH3 + 2PCl3 → 4P + 6HCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства прочих водородных соединений

Кислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп.

Прочитать про химические свойства галогеноводородов вы можете здесь.

Физические свойства

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.

Химические свойства

1. Вода реагирует с металлами и неметаллами .

1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :

2Na + 2H2O → 2NaOH + H2

  • с магнием реагирует при кипячении:
  • алюминий не реагирует с водой, так как покрыт оксидной плёнкой. Алюминий, очищенный от оксидной плёнки, взаимодействует с водой, образуя гидроксид:
  • металлы, расположенные в ряду активности от Al до Н , реагируют с водяным паром при высокой температуре, образуя оксиды и водород:
  • металлы, расположенные в ряду активности от после Н , не реагируют с водой:

Ag + Н2O ≠

2. Вода реагирует с оксидами щелочных и щелочноземельных металлов , образуя щелочи (с оксидом магния – при кипячении):

3. Вода взаимодействует с кислотными оксидами (кроме SiO2):

4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :

Например , сульфид алюминия разлагается водой:

5. Бинарные соединения металлов и неметаллов , которые не являются кислотами и основаниями, разлагаются водой.

Например , фосфид кальция разлагается водой:

6. Бинарные соединения неметаллов также гидролизуются водой.

Например , фосфид хлора (V) разлагается водой:

6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).


источники:

http://himi4ka.ru/ogje-2018-po-himii/urok-14-himicheskie-svojstva-prostyh-veshhestv-nemetallov-vodoroda-kisloroda-galogenov-sery-azota-fosfora-ugleroda-kremnija.html

http://chemege.ru/hydrogen/