Напишите условное уравнение сгорания топлива

Основы теплотехники

Топливо и его горение

Топливом называют горючие вещества, применяемые для получения теплоты (тепловой энергии) при их сжигании. Под сжиганием обычно подразумевают окисление горючих веществ кислородом воздуха.
Промышленным топливом считаются не все горючие вещества, а лишь те, которые удовлетворяют следующим требованиям:

  • при сгорании выделяют достаточно большое количество теплоты;
  • не дают продуктов сгорания, губительно действующих на окружающий растительный и животный мир;
  • встречаются в больших количествах в природе или легко получаются при переработке других веществ;
  • легко добываются и транспортируются на большие расстояния;
  • быстро воспламеняются.

Топливо, добываемое из недр земли в готовом виде, называют естественным , а получаемое путем переработки горючих веществ и природного топлива – искусственным . Как естественное, так и искусственное топливо подразделяют на твердое, жидкое и газообразное.

В качестве примера естественных твердых топлив можно привести ископаемый уголь, торф, горючие сланцы, дрова, отходы сельскохозяйственного производства. Искусственное твердое топливо – кокс, полукокс, пылевидное топливо, брикеты, древесный уголь.
К естественному жидкому топливу относится нефть, а к искусственному – получаемые из нефти продукты – бензин, керосин, дизельное топливо, газойль, мазут, нефтяное и котельное топливо.

По назначению топливо подразделяют на энергетическое и технологическое .
К энергетическим относят все низкосортные топлива, которые можно сжигать на электростанциях, в производственно-бытовых и других тепловых установках в натуральном виде или после переработки. Это антрацит, бурые угли, торф, природный газ, а также продукты переработки других топлив.
К технологическому топливу относят высокосортное топливо и коксующиеся угли.

По методу добычи и потребления различают местное и привозное топливо.

Составные части топлива

Топливо состоит из органической и минеральной частей.
Органическую часть топлива составляют следующие химические элементы: углерод ), водород 2), кислород 2), азот (N2) и сера (S). Топливо может состоять из смеси этих элементов или только их части.
Так, органическую массу кокса или древесного угля в основном составляет углерод, а нефтепродуктов и газового топлива – углерод, водород и кислород.

Наиболее ценные из перечисленных элементов топлива – углерод и водород.
Кислород и азот являются внутренним балластом топлива, поскольку они не горят. Сера является нежелательным компонентом топлива, несмотря на то, что сгорая, она выделяет теплоту. При сгорании этого элемента образуется сернистый газ и серная кислота, пагубно влияющие на экологию и вызывающие сильную коррозию металлов.

Минеральная часть топлива составляют вода и минеральные примеси, которые являются внешней балластной частью (внешним балластом) топлива. Содержание балластной части в топливе очень нежелательно, поскольку увеличивая массу и объем топлива, она уменьшает его тепловую ценность.
Минеральные составляющие после сжигания образуют твердый остаток – золу.

Сущность процесса горения

Горение есть окисление горючих элементов топлива кислородом, сопровождающееся выделением теплоты.
В зависимости от скорости распространения пламени различают нормальное горение и горение со взрывом . При нормальном горении скорость распространения пламени равна 15-25 м/с, а при взрывном горении – 2000-3000 м/с. Чтобы топливо начало гореть, его необходимо нагреть до определенной температуры, называемой температурой воспламенения .
Так, например, каменный уголь воспламеняется при температуре 225-375 ˚С, сухой торф – 225-300 ˚С, дрова – 350-450 ˚С, керосин – 380 ˚С, бензин – 415 ˚С, метан (СН4) – 650-700 ˚С и т. д.

При нагревании топлива до температуры воспламенения начинается распад горючей массы на составные элементы, которые затем окисляются кислородом и выделяют теплоту. Эта теплота способствует нагреву массы близлежащего топлива, в которых начинают протекать аналогичные процессы (распад и окисление) , и, таким образом, вся масса топлива, находящегося в топке, начинает гореть.
Для того, чтобы процесс горения не прекратился, выделяющаяся теплота должна поддерживать температуру топлива не ниже температуры воспламенения.

Горение может быть полным и неполным.
Полным горением называют процесс окисления горючих элементов топлива кислородом, при котором выделяются продукты, не способные гореть в дальнейшем.
Неполное сгорание топлива сопровождается выделением продуктов горения, которые в дальнейшем могут воспламеняться и сгорать повторно. Так, при полном сгорании углерода выделяется углекислый газ СО2, который в дальнейшем гореть не способен.

Однако, если углерод сгорает при недостаточном количестве кислорода, то продуктом его окисления является углекислота СО, которая может загореться при соответствующих условиях. При этом неполное горение сопровождается выделением значительно меньшего количества теплоты, т. е. считается нежелательным явлением. Для того чтобы процесс горения был полным, необходимо обеспечить подачу достаточного количества воздуха (содержащего кислород) в зону горения.
На практике, сжигая топливо, стараются придерживаться определенного баланса между количеством воздуха и топлива, поскольку избыток воздуха сопровождается потерями теплоты на его подогрев.

Количество воздуха, необходимое для полного сгорания топлива

Количество воздуха, необходимое для полного сгорания топлива, определить несложно, если известно процентное содержание в топливе основных горючих элементов – углерода, водорода, серы и кислорода.
Так как атомная масса углерода 12, а кислорода – 16, то для получения углекислого газа СО2 необходимо 12 частей углерода соединить с 32 частями кислорода, т. е. на одну массовую долю углерода должно приходиться 2,67 частей кислорода.
Зная атомную массу водорода и серы, а также формулы продуктов их полного окисления, можно аналогично рассчитать необходимое количество кислорода для сжигания 1 части любого горючего элемента.

При определении количества воздуха, необходимого для полного горения, следует учитывать, что в топливе тоже содержится некоторое количество кислорода, а также то, что массовая доля кислорода в воздухе — 23,2 %. В общем случае формула для определения массового количества воздуха для полного сгорания топлива имеет вид:

где: Ср , Нр , Sр , Ор – соответственно массовое содержание углерода, водорода, серы и кислорода в топливе.

При сгорании топлива часть кислорода воздуха не успевает вступить в реакцию окисления, поэтому для обеспечения полного сгорания топлива следует к нему подводить воздух с некоторым избытком по сравнению с теоретически необходимым количеством. Отношение действительного количества воздуха к теоретически необходимому количеству называют коэффициентом избытка воздуха . На практике этот коэффициент (в зависимости от вида топлива) может принимать значения от 1,05 (газообразное и пылевидное топливо) до 1,8 (твердое топливо) .

Теплота сгорания топлива

Важнейшая характеристика топлива – теплота его сгорания – количество теплоты, выделившейся при полном сгорании единицы количества топлива (для жидких и твердых топлив – кг, для газообразных – м 3 ) . Различают высшую и низшую теплоту сгорания.
Высшей теплотой сгорания Qв называют теплоту, выделяемую при полном сгорании единицы количества топлива, в результате которого образующаяся влага конденсируется и выделяется в виде жидкости из продуктов сгорания.
Если в результате сгорания единицы количества топлива образуемая влага остается в продуктах сгорания в парообразном состоянии, то выделяемую при этом теплоту называют низшей теплотой сгорания Qн . Эта величина меньше высшей теплоты сгорания топлива на теплоту парообразования (конденсации) влаги, образуемой при сжигании единицы количества топлива.

Теплоту сгорания топлива, кДж/кг , можно определить опытным путем (при сжигании порции топлива в специальном приборе – калориметре) или расчетом (по формулам Менделеева) , если известен элементарный состав топлива.

Например, для твердого топлива:

Qв = 339С + 1250Н – 108,85(О – S) ;

для жидкого топлива:

где: С , Н , О , S и W – соответственно процентное содержание углерода, водорода, кислорода, серы и влаги в рабочем топливе.

Условное топливо

При расчете расхода топлива, а также топливных ресурсов пользуются понятием условное топливо .
Это реальное топливо, теплота сгорания которого равна 29,3 МДж/кг.
Для перевода любого топлива в условное, пользуются тепловым эквивалентом, который получается от деления теплоты Qрц сгорания данного топлива на теплоту сгорания условного топлива, т. е. на 29300 кДж/кг или 29,3 МДж/кг.
Так, например, для торфа Эт = 8500/29300 = 0,29, т. е. 1 тонна торфа по своей тепловой ценности равноценна 0,29 тонны условного топлива.

Температура горения топлива

Следует различать теоретическую и действительную температуру горения.
Теоретической температурой горения называют максимальную температуру, которую способно давать данное топливо при полном сгорании с теоретически необходимым количеством воздуха. Ее определяют опытным путем, или аналитически, используя формулы, в которых учитывается массовая доля и теплотворная способность каждого горючего элемента в топливе. При этом теоретическая температура горения будет равна отношению теплоты, полученной от сгорания единицы топлива, к сумме произведений массовых составляющих горючих элементов на их теплотворную способность.
Теоретически определенная температура горения топлива всегда выше действительной, поскольку при расчетах не учитывается ее понижение из-за потерь теплоты на лучеиспускание, избыток воздуха при сжигании, неполное сгорание топлива и т. п.

Действительная температура горения (при коэффициенте избытка воздуха равном 1,0) : антрацита — 2270 ˚С, торфа – 1700 ˚С, мазута – 1125 ˚С, природного газа – 2000 ˚С.

Способы сжигания топлива

В котельной практике известны слоевой, факельный и вихревой способы сжигания топлива.

Слоевой способ сжигания топлива (рис. 1а) заключается в следующем. Загруженное в топку топливо распределяется ровным слоем по колосниковой решетке, через которую проходит воздух, встречающий на своем пути неподвижный или движущийся слой горящего топлива.
При взаимодействии с топливом воздух превращается в газовоздушный поток, который, пройдя через топочное пространство, выходит наружу. Для предотвращения уноса топлива необходимо, чтобы вес частичек топлива был больше силы газовоздушного потока. Однако, при слишком больших размерах кусков топлива замедляется процесс горения и уменьшается количество теплоты, получаемой в единицу времени, поэтому оптимальный размер кусков – 20-30 мм.

Основным достоинством слоевого способа сжигания твердого топлива является наличие на колосниках запаса горящего топлива, обеспечивающего устойчивость протекания процесса. Существенным недостатком этого способа является необходимость использования твердого топлива с оптимальными размерами кусков, что требует предварительной их сортировки и дробления.

Факельный способ сжигания топлива (рис. 1б) , в отличие от слоевого, заключается в том, что частицы топлива движутся вместе с газовоздушным потоком в топочном пространстве. Поэтому масса частиц должна быть как можно меньше, и они должны удерживаться в газовоздушном потоке.
Этим обеспечивается очень тщательное перемешивание частичек топлива с воздухом, интенсивное их горение, получается более однородный, устойчивый факел горения и происходит наиболее полное выгорание горючих элементов, составляющих горючую массу топлива. Поэтому при факельном способе применяют твердое топливо в виде очень мелких частичек (пыли) , размеры которых составляют доли миллиметра.

Существенный недостаток этого способа – малая скорость обтекания частиц топлива газовоздушным потоком, которая не позволяет значительно увеличить интенсивность горения, а также большая чувствительность к изменению режима работы, поскольку в топочном пространстве постоянно находится небольшое количество (запас) топлива. Поэтому регулирование процесса возможно при одновременном изменении подачи топлива и воздуха.

Вихревой способ сжигания топлива (рис. 1в) заключается в создании в топочном пространстве вихря, благодаря которому топливо, поступающее в топку, подхватывается газовоздушным потоком и движется вместе с ним по определенной траектории до полного выгорания горючих элементов из горючей массы.
Вихревое движение топлива в газовоздушном потоке способствует более длительному нахождению топлива в топочном пространстве, что создает условия для полного сгорания частиц размером 3-5 мм и для получения более устойчивого горения, чем при факельном способе сжигания.

Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)

Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

Горение газа. Реакции горения газообразного топлива.

Горение – это процесс быстрого окисления С и Н топлива, сопровождаемый выделением тепла, света и продуктов сгорания.

Реакции горения описываются стехиометрическими уравнениями, характеризующими качественные и количественные стороны реакции до ее начала и после завершения.

При горении в воздухе учитывают, что соотношение между азотом и кислородом N2/O2=79/21=3,76.

Общая формула горения углеводора:

Из этого выражения следует, что при сжигании 1-го нормального м 3 углеводорода CnHm требуется (n+m/4) нормального м 3 кислорода и 4,76 (n+m/4) нормального м 3 воздуха.

Определение количества воздуха необходимого для сжигания газа и выход продуктов сгорания

Т.е. для сжигания 1 м 3 газа CnHmтребуется (n+m/4) м 3 кислорода или 4,76(n+m/4) м 3 воздуха.Таким образом для природного газа, в составе которого отсуствуетCO и Н2 количество кислорода необходимого для сжигания газа может быть определено по выражению:

А теоретическое количество воздуха

CnHm-объёмное содержание углеводородов входящих в состав газовой смеси.

При влажном воздухе:

dв–влагосодержание воздуха) г/м 3 .

Трубочные процессы ведутся с некоторым избытком воздуха, поэтому действительное количество воздуха определяют:

Α-коэф. Избытка воздуха. Зависит от типа горелки( 1,05…2)

В состав продуктов сгорания входят углекислый газ, водяные пары, азот, кислород, иногда SO2. Их количество определяется стехиометрическими уравнениями горения.

Количество CO2 образ. При сгорании 1 м 3 газообр. Топлива зависит отсодержание углерода в компонентах смеси и в балласте топлива:

CO2 ,CO- объёмные доли(в процентах) содержания углекислого газа и окиси углерода в смеси.

При наличии в газообр. Топливе сероводорода в состав продуктов сгорания входит сернистый ангидрид(SO2)

H2S-объёмное содержание сероводорода в смеси.

Количество образующихся водяных паров слагается из V паров, получаемых в результате сгорания водорода, входящего в углеводород, и из других соединений водяных паров, содержащихся в газ Топливе в виде балласта и поступивших с воздухом.

H2-объёмное содержание водорода в топливе

dг-влагосодержание газа г/м 3

Количество кислорода входящее в состав продуктов сгорания определяется коэффициентом избытка воздуха, при котором ведётся процесс горения.

Содержание азота также определяется коэффициентом избытка воздуха и наличием азота в балласте топлива:

N2-объёмное содержание азота в газоаом топливе.

Полный объём продуктов сгорания 1 м 3 газообр. Топлива составит:

Температуры горения газа.

Основное количество тепла, выделяющегося при сжигании газа расходуется на нагрев продуктов сгорания до определённой температуры.

Различают следующие температуры горения газов:

Жаропроизводительность — это t продуктов полного сгорания горючих газов в адиабатических условиях при α=1 и при первоначальной t газа и воздуха = 0 0 С.

iпр. сгор-теплосодержание продуктов сгорания кДж/м 3

tж-жаропроизводительность, 0 С.

Vco2 VН20 VN2 –объем сотавных частей продуктов сгорания 1 м 3 газа.

Ср –средняя объёмная теплоёмкость при P=const. составных частей продуктов сгорания.

В формуле используется средняя теплоёмкость, так как Ср- величина непостоянная, растёт с повышением температуры.

tж:для метана 2043 0 С ; для пропана 2110 0 С ; для водорода 2235 0 С

Эти данные при горении в сухом воздухе.

При содержании 2 % по массе влаги температура понижается на 25-30 0 С

Калориметрическая- t горения газа, учитывающая коэф. Избытка воздуха и физическое тепло газа и воздуха, т.е принимается действительные значения тем-ры. другими словами это t до которой нагрелись бы продукты полного сгорания, если бы всё тепло топлива и воздуха пошло на их нагрев.

iгiв- энтальпия газа и воздуха кДж/м 3

Написав уравнение в развёрнутом виде и решив его относительно калорим. тем-ры Получим:

Tг tв –исходная темпетатура газа и воздуха.

— расход газа,

теоретическое количество воздуха необходимое для сжигания 1 метра куб. газа.

Физическое тепло газа и воздуха следует учитывать, если они перед сжиганием нагреты свыше 100 0 C, так как при меньших t эта величина незначительна по сравнению с теплотой сгорания.

Теоретическая температура горения учитывает потери тепла за счёт химической неполноты сгорания и при эндотермических реакциях диссоциации продуктов сгорания.

H2O↔H2+0,5O2-Q ;

Qx- потери теплоты за счёт химической неполноты сгорания и на диссациацию СО2 и Н20.

При t до 1500 0 C(имеет место в топках котлов и пром. Печей) величину Qx можно не учитывать так как в этом случае диссоциирует ничтожная доля продуктов сгорания. При более высоких температурах надо учитывать.).

Действительная темература горения достигается в реальных условиях сжигания топлива, она ниже теоретической, так как при ее определении учитываются теплопотери в окружающую среду, длительность процесса горения, метод сжигания газа и другие факторы.

ηпопытный пирометрический коэффициент .Для большинства топок котлов и печей 0,65. Для наиболее совершенных 0,8- 0,85

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все.

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор.

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Горение топлива

Главная » Статьи » Горение топлива

Горение топлива

При сжигании топлива входящие в его состав горючие элементы соединяются с кислородом воздуха. При этом происходит преобразование химической энергии топлива в тепловую, идущую на нагрев продуктов сгорания топлива.

Принято различать полное и неполное сгорание топлива, процесс протекания которых может идти одновременно, но конечные результаты будут различны. Полное горение топлива можно характеризовать как быстро протекающий физико-химический процесс взаимодействия горючего вещества окислителем, сопровождающийся интенсивным выделением теплоты.

Химическую реакцию между веществами А и Б, протекающую с образованием продуктов М и Н, можно описать стехиометрическим уравнением следующего вида:

где а, б, м и н — число молекул, участвующих в простейшем ходе реакции; Q — тепловой эффект реакции.

Подобные уравнения химических реакций отдельных горючих составляющих топлива дают лишь итоговый материальный баланс, но не отражают действительного механизма процесса. Скорость химической реакции зависит от концентрации реагирующих веществ, определяемых стехиометрическими уравнениями типа (2-1), и от температуры. О скорости реакции можно судить по изменению концентрации реагирующих или получаемых в результате реакции веществ. Обычно горение топлива относится к реакциям второго порядка (бимолекулярным). Скорость этих реакций определяется в соответствии с законом действующих масс следующим образом:

где k — константа скорости химической реакции; С1 С2 — концентрация исходных веществ А Б; а и б — число молекул, участвующих в реакции.

Когда прямая и обратная реакции осуществляются с одинаковыми скоростями, наступает химическое равновесие. Отношение концентраций реагирующих веществ в момент равновесия называют константой равновесия Кс, которая для газообразных веществ может быть выражена через парциальные давления реагирующих газов, и ее принято обозначать через Кр. Величины Кс и Кр связаны между собой уравнением

В уравнении:
R — газовая постоянная, Дж/(моль*град) или икал/(моль*град);
Т- температура реакции, К;
Δ n — изменение числа молей.

Зависимость константы скорости реакции от температуры можно характеризовать экспоненциальным уравнением Аррениуса:

В уравнении:
K0 — предэкспоненциальный множитель;
е — основание натуральных логарифмов;
R — газовая постоянная;
Е — энергия активации, Дж/моль или ккал/моль.

Из уравнения (2-4) следует, что протекание реакций возможно при столкновении реагирующих молекул, которые обладают определенным запасом энергии, достаточным для разрушения или ослабления внутримолекулярных связей. Величина энергии активации Е и есть этот минимальный запас энергии, обеспечивающий эффективность столкновения и химическое взаимодействие молекул; при отсутствии этой энергии химическое горение топлива не происходит. Значение энергии активации для смеси газов обычно составляет величину от 83,8 до 168Х10 3 КДж/моль или от 20 до 40-10 3 ккал/моль.

Величина предэкспоненциального множителя K0 менением температуры меняется не сильно: примерно k0= const√T.

Для выяснения влияния температуры на скорость химической реакции используем способ, предложенный В. А. Спейшером [JI. 8], и объединением равенства (2-2) и (2-4) следующим образом:

В формуле:
w1 — скорость химической реакции при температуре T1=500 К;
w2 — то же при T2=1000 К и Е=16x-10 3 КДж/моль.

Из расчета получим, что при увеличении температуры в 2 раза скорость реакции изменится в 5×10 8 раз. Значения констант равновесия зависят от температуры следующим образом:

В уравнении:
Q — тепловой эффект реакции, КДж/моль или ккал/моль, при давлении p=const или постоянном объеме;
k — константа равновесия, которую можно выразить через концентрации kc или парциальные давления реагирующих веществ kp.

Из последнего уравнения следует, что с ростом температуры величина k в реакциях с выделением теплоты (экзотермических) увеличивается, с отнятием теплоты (эндотермических) уменьшается. Отсюда видно, что при высоких температурах может происходить диссоциация молекул, например молекул С02; при невысоких температурах диссоциация происходить не будет.

Однако закон действующих масс и уравнение Аррениуса недостаточны для объяснения истинного характера протекания реакций горения водорода, углерода и его окиси.

Рис. 2-1. Схема окисления водорода при цепной реакции.

Наиболее вероятен предложенный академиком Н. Н. Семеновым цепной характер протекания реакций горения с наличием промежуточных стадий реакций и соединений с активными центрами. Так, например, соединение водорода и кислорода начинается с распада молекул Н2 на атомы при их столкновении с поверхностью нагретого источника зажигания или другой молекулой М, обладающей высокой энергией: Н2+М→2H+М, вследствие чего каждый из возникших атомов водорода реагирует (рис. 2-1) затем с молекулой кислорода:

образуя начало процесса цепной реакции горения водорода. Подобные процессы очень чувствительны к присутствию ускорителей — катализаторов, образующих промежуточные соединения типа ОН.

Если молекула, обладающая энергией активации, окисляясь, порождает одну новую активную молекулу, которая продолжает цепь, то процесс называют неразветвленной цепной реакцией. Если же активная молекула вызывает при реакции образование нескольких новых активных молекул, из которых одна продолжает начатую цепь, а другие начинают новые цепи, то такую реакцию называют разветвленной цепной реакцией.

Схема подобной реакции показана на рис. 2-1 для водорода, как наиболее изученная спектроскопическим методом. Скорость течения цепных реакций превосходит скорость течения обычных химических реакций в сотни тысяч раз. Однако результирующая скорость реакции горения определяется скоростью самой медленной реакции, образующей данную цепь. Примерами таких реакций, кроме горения водорода, является горение углерода, имеющего более сложный характер, с участием атомарного водорода, гидроксильных радикалов и других активных центров.

Рис. 2-2. Горение топлива (твердого). I — подогрев, испарение влаги; II — возгонка летучих; III — горение летучих, образование кокса; IV — горение кокса; V — выгорание кокса; VI — образование шлака.

Процесс горения любой частицы натурального твердого топлива протекает еще более сложным путем и сопровождается комплексом физико-химических явлений: начинается с подогрева топлива, сопровождающегося испарением влаги и возгонкой летучих и продолжающегося до момента воспламенения. Далее происходит горение топлива (летучих и кокса), зависящее от контакта с окислителем, зольности топлива, температур и других факторов, и заканчивается образованием шлака.

Схематически эти процессы показаны на рис. 2-2, где они искусственно разделены для возможности представления хода каждого процесса.

Все перечисленные процессы чаще протекают одновременно, чем и определяется сложность их исследования. Необходимо напомнить, что реакции веществ, находящихся в одинаковом агрегатном состоянии, называются гомогенными; к ним относятся реакции горения газов. Горение топлива жидкого и твердого протекает при разном агрегатном состоянии веществ; такие реакции называются гетерогенными.

Гетерогенные реакции сильно зависят от скорости подвода или переноса окислителя к поверхности горящей частицы — от скорости диффузии. Увеличение скорости подвода окислителя к горящей частице приводит к увеличению скорости реакции до определенных пределов. Гели процесс сжигания топлива начинается с подогрева, удаления влаги и возгонки летучих, то в это время цепные реакции протекают медленно. С повышением температуры число активных центров растет, скорость реакции увеличивается, что приводит к вспышке топлива. Температуру, при которой происходит это явление, называют температурой воспламенения; она зависит от свойств топлива, условий отвода теплоты и некоторых других факторов (табл. 2-1).

Таблица 2-1. Температуры воспламинения некоторых видов топлива.

Развитие цепной реакции и повышение температуры ограничиваются присутствием замедлителей — ингибиторов, к которым нужно отнести инертные примеси в топочном устройстве — поверхности нагрева, негорящие частицы топлива, холодную обмуровку и другие препятствия, движению молекул. Время сгорания топлива зависит от того, сколь быстро горючая частица встретится с частицей окислителя, который содержится в поступающем воздухе. Иначе говоря, время, необходимое для сгорания топлива, складывается из времени, в течение которого достигается контакт горючего с окислителем, tф и времени протекания химической реакции tх.

Рис. 2-3. Зависимость скорости горения твердого топлива от температуры и области горения.

Если время контактирования больше времени химической реакции, то горение относят к диффузионному, в обратном случае горение относят к кинетическому. Изображая графически изменение скорости горения топлива (рис. 2-3) в зависимости от температуры при постоянной массовой концентрации окислителя, можно показать, что в соответствии с уравнением Аррениуса (2-4) скорость реакции с ростом Т сильно увеличивается (кривая 1). Область горения, ограниченная осью ординат и кривой 1, называют кинетической; осью абсцисс и кривой 2 — диффузионной областью горения. Между кривыми 1 и 2 существует область 3, в которой скорости химических реакций соизмеримы со скоростями диффузии.

Рис. 2-3. Зависимость скорости горения твердого топлива от температуры и области горения.

Представленная на рис. 2-1 схема цепного окисления водорода для случая окисления углерода сильно усложняется из-за образования окиси углерода СО, двуокиси углерода СО2 (первичные реакции) и появления реакций типа С+СО2=2СО (вторичных реакций) . При сжигании натуральных топлив количество параллельно идущих реакций значительно увеличивается, и они накладываются друг на друга.

Горение жидкого и твердого топлива сопровождается его газификацией, когда процессу горения сопутствует термическое разложение органической массы топлива.

Воспламенение продуктов газификации или газообразного топлива приводит к образованию фронта пламени, состоящего из слоя смеси, обычно весьма тонкого, в котором идет процесс горения. Если фронт пламени перемещается в неподвижной среде, то протекающие в нем процессы, по данным В. А. Спейшера и Н. Л. Стаскевича, могут быть охарактеризованы рис. 2-4.

Рис. 2-4. Распространение (а) пламени и изменение (б) температуры T, концентрации горючего С и скорости реакции w при сгорании неподвижной газовоздушной смеси в горизонтальной трубе.

Для возможности характеризовать горение газовоздушных смесей в ламинарном потоке пользуются понятием нормальной скорости распространения пламени:

где uн — нормальная скорость распространения пламени, см/с; а — коэффициент температуропроводности смеси, см 2 /с.

Это приближенное выражение для определения uн получено из анализа размерностей в дифференциальном уравнении теплопроводности с источником и показывает, что нормальная скорость распространения пламени зависит от физических свойств смеси и ее химической активности, так как время сгорания обратно пропорционально скорости химической реакции при температуре горения.

Для движущейся горящей среды имеет значение характер ее движения. При переходе от ламинарного движения к турбулентному меняется не только очертание зоны горения, но и изменяется интенсивность процесса. Некоторое представление о влиянии режима движения смеси на скорость распространения пламени можно получить при рассмотрении рис. 2-5. Из-за больших трудностей проведения теоретических и экспериментальных исследований теория турбулентного горения еще находится в стадии разработки. Следует помнить, что в турбулентном потоке перемешивание происходит не только за счет хаотического движения молекул, но и за счет перемещений молей и значительных объемов газа из одного слоя в другой, что интенсифицирует процессы тепломассообмена. Поэтому рядом исследователей предлагается в отличие от модели с фронтом горения иметь модель объемного горения, показанную на рис. 2-6, или ей подобную схему.

Более сложным является процесс горения твердого топлива даже в случае предварительного измельчения его до пылевидного состояния. Многочисленные исследования процесса горения частиц твердого топлива привели к установлению двух основных закономерностей закона горения отдельной натуральной угольной частицы и закона распределения частиц полидисперсной угольной пыли по размерам.

Рис. 2-5. Изменение скорости распространения пламени в зависимости от режима движения сжигаемой смеси газа с воздухом.

Рис. 2-6. Модель объемного турбулентного горения.

Параллельное выгорание летучих и коксового остатка, наблюдаемое при горении угольной пыли, обусловлено различием размеров и форм частиц. Реакционной поверхностью коксового остатка можно считать сферу, к которой равномерно поступает кислород воздуха. Опытами установлено, что в реальных топочных условиях решающую роль играют реакции типа

Исходя из указанных положений наиболее вероятной схемой процесса горения является горение пылинки в топочной камере в объеме движущегося потока — выход летучих, горение летучих в движущейся среде и горение коксовой частицы с одновременными физико-химическими превращениями минеральной части топлива. Эти превращения происходят одновременно с диффузией окислителя к остатку частицы, горением остатка при протекании вторичных реакций продуктов сгорания на раскаленной поверхности частиц или вблизи от нее.

Схематизируя явление, можно исключить из него некоторые стадии и рассматривать горение угольной пыли после ее прогрева как квазистационарный процесс. Это позволяет записать ряд дифференциальных уравнений горения, решение которых можно выполнить с помощью электронно-вычислительных машин.

Из-за сложности этих уравнений и возможности решения технических задач с помощью более простых способов, эти уравнения в данном курсе не приводятся, ознакомиться с ними можно в специальной литературе.

Также представляет собой зону газификации с интенсивно идущим процессом слой топлива на колосниковой решетке с подачей под него воздуха. В топку поступают газообразные продукты газификации топлива и мелкие твердые частицы горючих веществ, создающие над слоем факел. В факеле и происходит процесс сжигания, протекающий при наличии достаточного количества свободного кислорода в области диффузионного горения. Процесс, протекающий в слое, приводит к развитию высоких температур, что интенсифицирует процесс газификации топлива. По высоте слой принято делить на два участка: кислородный и восстановительный; толщина первого обычно мала, и свободный кислород отсутствует после прохода слоя высотой в два-три куска топлива. При большом выходе летучих веществ эта зона сокращается, при малом — увеличивается. В той части слоя, где протекает процесс газификации топлива, свободный кислород отсутствует, отмечается даже его недостаток. Вследствие этого процесс горения выносится частично в объем над слоем, куда подается дополнительный воздух. Доступ окислителя к горючему затрудняется шлакообразованием, которое увеличивает газовое сопротивление слоя.

Для слоевых топок это вызывает необходимость ограничивать содержание золы в топливе, особенно легкоплавкой, в камерных топках требует периодической очистки поверхности нагрева от шлака.

В соответствии с изложенным процесс горения натурального топлива можно с некоторой условностью разделить на следующие стадии (табл. 2-2).

Таблица 2-2. Стадии процесса горения натурального топлива.

Такая разбивка на стадии условна потому, что эти стадии процесса протекают не только последовательно, но и параллельно, накладываясь друг на друга, как это имеет место, например, при испарении влаги и возгонке летучих, возгонке и горении летучих, образовании и горении кокса и т. д. Продолжительность протекания отдельных стадий горения зависит от свойств топлива, конструктивных особенностей топочного устройства и ряда других факторов, из которых главными являются процессы тепло- и массообмена.

Все это свидетельствует о большой сложности топочных, процессов и необходимости рассмотрения любой из конструкций топки с позиций обеспечения наиболее полного сгорания топлива, наименьшего загрязнения поверхностей нагрева в топке, удобства, простоты и надежности работы устройства, быстрого регулирования производительности в достаточно широких пределах без снижения экономичности, обеспечения передачи наибольшего количества теплоты радиацией и возможности наиболее полной механизации и автоматизации всех процессов, связанных с работой данного топочного устройства.


источники:

http://zdamsam.ru/a23385.html

http://kotel-kv.kz/fuel-burning.html