Найди и реши уравнения с наибольшим корнем

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.

Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n

Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство

Немного теории.

Решение иррациональных уравнений и неравенств

1. Иррациональные уравнения

Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.

Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.

ПРИМЕР 1.
\( \sqrt[\Large6\normalsize] = \sqrt[\Large6\normalsize] <2x-6>\)

Возведя обе части уравнения в шестую степень, получим:
\( x^2-5x = 2x-6 \Rightarrow \)
\( x^2-7x +6= 0 \Rightarrow \)
\( x_1=1, \; x_2=6 \)
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <-4>= \sqrt[\Large6\normalsize] <-4>\), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <6>= \sqrt[\Large6\normalsize] <6>\) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6

Введя новую переменную \( u=x^2-x\), получим существенно более простое иррациональное уравнение:
\( \sqrt+\sqrt = \sqrt <2u+21>\).
Возведём обе части уравнения в квадрат:
\( (\sqrt+\sqrt)^2 = (\sqrt<2u+21>)^2 \Rightarrow \)
\( u+2 +2\sqrt\sqrt +u+7 = 2u+21 \Rightarrow \)
\( \sqrt <(u+2)(u+7)>= 6 \Rightarrow \)
\( u^2+9u+14=36 \Rightarrow \)
\( u^2+9u-22=0 \Rightarrow \)
\( u_1=2, \; u_2=-11 \)
Проверка найденных значений их подстановкой в уравнение \( \sqrt+\sqrt = \sqrt <2u+21>\) показывает, что \( u_1=2 \) — корень уравнения, а \( u_2=-11 \) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение \( x^2-x=2 \Rightarrow x^2-x-2=0 \), решив которое находим два корня: \( x_1=2, \; x_2=-1 \)
Ответ: 2; -1.

Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
\( 2x^2 +6 -2\sqrt <2x^2-3x+2>= 3x+12 \Rightarrow \)
\( 2x^2 -3x +2 -2\sqrt <2x^2-3x+2>-8 = 0 \Rightarrow \)

Введя новую переменную \( y=\sqrt <2x^2-3x+2>\), получим: \( y^2-2y-8=0 \), откуда \( y_1=4, \; y_2=-2 \). Значит, исходное уравнение равносильно следующей совокупности уравнений:
\( \left[\begin \sqrt <2x^2-3x+2>=4 \\ \sqrt <2x^2-3x+2>= -2 \end\right. \)

Из первого уравнения этой совокупности находим: \( x_1=3<,>5; \; x_2=-2 \). Второе уравнение корней не имеет.

Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение \( \sqrt <2x^2-3x+2>=4\). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.

Областью определения уравнения является луч \( [5; \; +\infty) \). В этой области выражение \( \sqrt \) можно представить следующим образом: \( \sqrt = \sqrt\sqrt \). Теперь уравнение можно переписать так:
\( x+x -5 +2\sqrt\sqrt +2\sqrt +2\sqrt -48 = 0 \Rightarrow \) \( (\sqrt)^2 +2\sqrt\sqrt +(\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \Rightarrow \) \( (\sqrt +\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \)

Введя новую переменную \( y= \sqrt +\sqrt \), получим квадратное уравнение \( y^2+2y-48=0 \), из которого находим: \( y_1=6, \; y_2=-8 \). Таким образом, задача свелась к решению совокупности уравнений:
\( \left[\begin \sqrt +\sqrt =6 \\ \sqrt +\sqrt = -8 \end\right. \)
Из первого уравнения совокупности находим \( x= \left( \frac<41> <12>\right)^2 \), второе уравнение совокупности решений явно не имеет.

Проверка. Нетрудно проверить (подстановкой), что \( x= \left( \frac<41> <12>\right)^2 \) — является корнем уравнения \( \sqrt +\sqrt =6 \). Но это уравнение равносильно исходному уравнению, значит, \( x= \left( \frac<41> <12>\right)^2 \) — является корнем и исходного уравнения.
Ответ: \( x= \left( \frac<41> <12>\right)^2 \)

Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.

ПРИМЕР 5.
\( \sqrt[\Large4\normalsize] <1-x>+ \sqrt[\Large4\normalsize] <15+x>=2 \)

Введём новые переменные: \( \left\<\begin u=\sqrt[\Large4\normalsize] <1-x>\\ v=\sqrt[\Large4\normalsize] <15+x>\end\right. \)

Тогда уравнение примет вид \(u+v=2\). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
\( \left\<\begin u^4=1-x \\ v^4= 15+x \end\right. \)

Сложим уравнения последней системы: \(u^4 +v^4 =16\). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
\( \left\<\begin u+v=2 \\ u^4 +v^4 =16 \end\right. \)
Решив её, находим: \( \left\<\begin u_1=0 \\ v_1 =2; \end\right. \) \( \left\<\begin u_2=2 \\ v_2 =0 \end\right. \)

Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=0 \\ \sqrt[\Large4\normalsize] <15+x>=2; \end\right. \) \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=2 \\ \sqrt[\Large4\normalsize] <15+x>=0 \end\right. \)

Решив эту совокупность, находим: \(x_1=1, \; x_2=-15 \)

Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.

ПРИМЕР 6.
\( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>= \sqrt[\Large3\normalsize] <2x-1>\)

Возведём обе части уравнения в куб:
\( 2x+1 + 3\sqrt[\Large3\normalsize] <(2x+1)^2>\cdot \sqrt[\Large3\normalsize] <6x+1>+ 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <(6x+1)^2>+6x+1 = 2x-1 \Rightarrow \) \( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot (3\sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>) = -6x-3 \)

Воспользовавшись исходным уравнением, заменим сумму \( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>\) на выражение \( \sqrt[\Large3\normalsize] <2x-1>\):
\( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot \sqrt[\Large3\normalsize] <2x-1>= -6x-3 \Rightarrow \)
\( 3\sqrt[\Large3\normalsize] < (2x+1)(6x+1)(2x-1) >= -2x-1 \)
Возведём обе части в куб:
\( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 \Rightarrow \)
\( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 \Rightarrow \)
\( 16x^2(2x+1) =0 \Rightarrow \)
\( x_1= -0<,>5; \; x_2=0 \)

Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.

2. Иррациональные неравенства

Рассмотрим иррациональное неравенство вида \( \sqrt 0 \). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.

Таким образом, иррациональное неравенство \( \sqrt 0 \\ f(x) 0 \\ x^2-x-12 0 \\ x > -12 \end\right. \)

Получаем: \( x \geqslant 4\)


Ответ: \( x \geqslant 4\)

Рассмотрим теперь неравенство вида \( \sqrt > g(x) \).

Ясно, во-первых, что его решения должны удовлетворять условию \( f(x) \geqslant 0 \).
Во-вторых, замечаем, что при \( g(x) g(x) \) не вызывает сомнений.
В-третьих, замечаем, что если \( g(x) \geqslant 0 \), то можно возвести в квадрат обе части заданного иррационального неравенства.

Таким образом, иррациональное неравенство \( \sqrt > g(x) \) равносильно совокупности систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ g(x) (g(x))^2 \end\right. \)

Во второй системе первое неравенство является следствием третьего, его можно не писать.

Данное неравенство равносильно совокупности систем неравенств:
\( \left\<\begin x^2-x-12 \geqslant 0 \\ x 0 \)

Преобразуем неравенство к виду \( x^2+3x-10 +3\sqrt >0 \) и введём новую переменную \( y= \sqrt \). Тогда последнее неравенство примет вид \( y^2+3y-10 >0 \), откуда находим, что либо \(y 2\).

Таким образом, задача сводится к решению совокупности двух неравенств:
\( \left[\begin \sqrt 2 \end\right. \)

Первое неравенство не имеет решений, а из второго находим:
\( x^2+3x >4 \Rightarrow \)
\( (x+4)(x-1) >0 \Rightarrow \)
\( x 1 \)
Ответ: \( x 1 \).

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Уравнение и его корни

Время чтения: 11 минут

Основные понятия уравнения

Уравнением называют равенство, в котором одна из переменных неизвестна, и её нужно найти. Значение этой неизвестной должно быть таким, чтобы равенство было верным.

К примеру: 3+4=7 это числовое равенство, при вычислении которого с левой стороны получается 7=7.

Уравнением же будет называться следующее равенство: 3+х=7, поскольку есть неизвестная переменная х, её значение можно найти.

Из этого уравнения следует, что переменная х=4, только при таком его значении равенство 3+х=7, будет верным.

Неизвестные переменные принято писать в виде маленьких латинских букв, можно любыми, но чаще используют x,y,z.

Получается, чтобы равенство сделать уравнением необходимо, чтобы в нем была буква, значение которой неизвестно.

Как мы понимаем существует множество примеров уравнений с разными арифметическими действиями.

Пример: х + 5 = 1= 9; z — 2 = 7; 9 * y = 18, 6 : f = 2

Помимо этого существуют уравнения со скобками. К таким уравнениям относится 8 : (х — 4) = 2 * (8 — х), неизвестных может быть несколько, они могут быть, как слева уравнения, так и справа или в обеих частях.

Помимо таких простых уравнений они могут быть с корнями, логарифмами, степенями и тд.

Уравнение может содержать несколько переменными, тогда их принято называть, соответственно уравнениями с двумя, тремя и более переменными.

3 * а = 15 : х — уравнение с двумя переменными:

8 — а = 5 * х — z — уравнение с тремя переменными.

Корень уравнения

Мы часто слышим фразу на уроках математики, «найдите корень уравнения», давайте разберёмся, что же это значит.

В примере 3+х=7, можно представить вместо буквы число, и уравнение тогда станет равенством, оно может быть либо верным, либо неверным, если поставить х=3, то первичное равенство примет вид 3+3 = 7 и станет неверным, а если х= 4 то равенство 3+4=7 будет верным, а значит х = 4 будет называться корнем или по другому решением уравнения 3+х=7.

Определение.

Отсюда можно выделить следующее определение: корень уравнения — это такое значение неизвестной переменной, при котором числовое равенство будет верным.

Стоит отметить, что корней может быть несколько или не быть вовсе.

Рассмотрим подробнее пример который не будет иметь корней. Таким примером станет 0 * х = 7, сколько бы чисел мы сюда не подставляли равенство не будет верным, так как умножая на ноль будет ноль, а не 7.

Но существуют и уравнения с множественным числом корней, к примеру, х — 3 = 6, в таком уравнении только один корень 9, а в уравнении квадратного вида х2 = 16, два корня 4 и -4, можно привести пример и с тремя корнями х * (х — 1) * (х — 2) = 0, в данном случае три решения ноль, два и один.

Для того чтобы верно записать результат уравнения мы пишем так:

  • Если корня нет, пишем уравнение корней не имеет;
  • Если есть и их несколько, они либо прописываются через запятые, либо в фигурных скобках, например, так: <-2, 3, 5>;
  • Еще одним вариантом написания корней, считается запись в виде простого равенства, к примеру неизвестная х а корни 3,5 тогда результат прописывается так: х=3, х=5.
  • или прибавляя индекс снизух1 =3 , х2 = 5. данным способом указывается номер корня;
  • Если решений уравнения бесконечное множество, то запись будет либо в виде числового промежутка от и до, или общепринятыми обозначениями. множество натуральных чисел N, целых – Z, действительных — R.

Стоит отметить, что если уравнение имеет два и более корней, то чаще употребляется понятие решение уравнения. Рассмотрим определение уравнения с несколькими переменными.

Решение уравнения с двумя и более переменными, означает, что эти несколько значений превращают уравнение в верное равенство.

Представим, что мы имеем следующее уравнение х + а = 5, такое уравнение имеет две переменные. Если мы поставим вместо них числа 3 и 6 то равенство не будет верным, соответственно и данные числа не являются решением для данного примера. А если взять числа 2 и 3 то равенство превратится в верное, а числа 2 и 3 будут решением уравнения. Представленные уравнения с несколькими переменными, тоже могут или не иметь корня вообще или наоборот иметь множество решений.

Правила нахождения корней

Таких правил существует несколько рассмотрим их ниже.

Пример 1

Допустим мы имеем уравнение 4 + х = 10, чтобы найти корень уравнения или значение х в данном случае необходимо найти неизвестное слагаемое, для этого есть следующее правило или формула. Для нахождения неизвестного слагаемого, нужно из суммы вычесть известное значение.

Решение:

Чтобы проверить является ли 6 решением, мы ставим его на место неизвестной переменной х в исходное уравнение, получаем следующее равенство 4 + 6 = 10, такое равенство является верным, что означает число корня уравнения, равно 6.

Пример 2

Возьмём уравнение вида х — 5 = 3, в данном примере х это неизвестное уменьшаемое, для того чтобы его найти необходимо следовать следующему правилу:

Для нахождения уменьшаемого необходимо сложить разность и вычитаемое.

Решение:

Проверяем правильность нахождения корня уравнения, подставляем, вместо переменной неизвестной, найденное число 8, получаем равенство 8 — 5 = 3, так как оно верное, то и корень уравнения найден правильно.

Пример 3

Берём уравнение, в котором неизвестное х будет вычитаемое к примеру: 8 — х = 4. для того чтобы найти х необходимо воспользоваться правилом:

Для нахождения вычитаемого, нужно из уменьшаемого вычесть разность.

Решение:

Проверяем правильность нахождения корня уравнения, для этого полученное значение ставим вместо неизвестного вычитаемого в исходный пример, и получаем следующее равенство 8 — 4 = 4, равенство верно, значит и корень найден правильно.


источники:

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

http://www.napishem.ru/spravochnik/matematika/uravnenie-i-ego-korni.html