Найдите корень уравнения егэ 2022

Прототипы задания №1 профильного ЕГЭ 2022 по математике

Новые задания №1 ЕГЭ 2022 по математике профильного уровня — простейшие уравнения.

Для успешного результата необходимо уметь решать рациональные, иррациональные, показательные, тригонометрические и логарифмические уравнения, их системы.

Задание №1 ЕГЭ 2022 математика профильный уровень Прототипы

Источник: math100.ru→ Рациональные уравнения

→ Тригонометрические уравнения

time4math.ru→ скачать задания
vk.com/ekaterina_chekmareva→ задания

При отработке данного задания будут полезны книги:

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

ЕГЭ Математика. Профильный уровень. Проект 2022.

Перейти к заданию №

Ознакомьтесь с Проектом Демонстрационного варианта ЕГЭ 2022 по математике, который здесь представлен с решениями всех заданий первой части — заданий с кратким ответом.

Здесь вы можете ознакомиться с первой частью варианта и поработать над заданиями профильного уровня с кратким ответом. Вторая часть варианта – задания профильного уровня с развёрнутым ответом – представлена в разделе Профильный уровень. Задачи с развёрнутым ответом.

В демонстрационном варианте представлено по несколько примеров заданий на некоторые позиции экзаменационной работы. В реальных вариантах экзаменационной работы на каждую позицию будет предложено только одно задание.

Чтобы ознакомиться с содержанием экзамена базового уровня, перейдите на страницу с интерактивной Демоверсией базового уровня.

Сдадим ЕГЭ по математике? Легко!

Нужны такие материалы в сети? Узнайте, как поддержать сайт и помочь его развитию.

Задание 1

Найдите корень уравнения 3 x − 5 = 81 .

Найдите корень уравнения √3x + 49 ______ = 10.

Найдите корень уравнения log8(5x + 47) = 3 .

Решите уравнение √2x + 3 ______ = x.
Если корней окажется несколько, то в ответ запишите наименьший из них.

В ромбе ABCD угол DBA равен 13°. Найдите угол BCD. Ответ дайте в градусах.

Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на бóльшую сторону параллелограмма.

Задание 4

Найдите \(\sin<2\alpha>\) , если \(\cos <\alpha>= 0,6\) и π

Задание 5

В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. На какой высоте будет находиться уровень жидкости во втором сосуде? Ответ дайте в сантиметрах.

Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.

Проведенная плоскость образует новую грань отсечённой призмы, которая также составляет половинку противолежащей грани исходной призмы (по свойствам средней линии треугольника). Таким образом, площадь боковой поверхности отсечённой треугольной призмы составляет половину заданной площади: 24:2 = 12.

Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1:2 , считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса равен 54?

Разделив высоту конуса в отношении 1:2, получим, что высота меньшего конуса (верхней части) составляет одну третью часть высоты большего (исходного) конуса.
Так как маленький конус полностью подобен большому, то можно воспользоваться правилами подобия: если линейные размеры подобных фигур относятся с коэффициентом \(k\), то их объёмы относятся с коэффициентом \(k^3\).

\[k = \frac<1><3>; \;\; k^3 = \frac<1><27>\] Следовательно, объём маленького конуса равен \(54:27=2,\) а объём нижней части большого конуса \(54-2 = 52.\)

Задание 6

На рисунке изображён график дифференцируемой функции y = f(x) . На оси абсцисс отмечены девять точек: x1 , x2 , . x9.

На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f‘(x) в точке x0.

Для получения абсолютной величины числа нужно построить на клеточках прямоугольный треугольник так, чтобы его гипотенуза располагалась на касательной, а вершины строго в узлах клеток. Отношение длины катета, параллельного оси Oy к длине катета, параллельного оси , даёт значение тангенса нужного угла.

Задание 7

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением

где c = 1500 м/с — скорость звука в воде; f0 — частота испускаемого сигнала (в МГц); f — частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с.

Первым делом убеждаемся, что размерности всех величин в формуле, в условии задачи и в вопросе к заданию заданы в единой системе единиц. Если требуется, например, переход от километров к метрам или от секунд к часам, выполняем соответствующие вычисления.

Подставляем в формулу числовые значения \[\nu = c\cdot\frac;\\ 2 = 1500\cdot\frac.\] Решаем получившееся уравнение относительно неизвестной \(f\). \[2(f+749) = 1500(f-749);\\ 2f-1500f=-2\cdot749-1500\cdot749;\\ 1498f = 1502\cdot749; \;\; 2f = 1502;\;\;f=751(МГц).\]

Задание 8

Весной катер идёт против течения реки в 1 2 _ 3 раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в 1 1 _ 2 раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

Обозначим символом v собственную скорость катера (км/ч), символом x — скорость течения реки весной (км/ч). Тогда скорость течения реки летом составляет (x — 1) км/ч. Имеем
весной: катер идёт против течения со скоростью (vx), по течению со скоростью (v + x). По условию первая скорость в 1 2 /3 раза меньше, т.е.
(v + x)/(vx) = 1 2 /3 ;
летом: катер идёт против течения со скоростью (v — (x — 1)), по течению со скоростью (v + (x — 1)). По условию первая скорость в 1 1 /2 раза меньше, т.е.
(v + (x — 1))/(v — (x — 1)) = 1 1 /2 .
Объединяем уравнения в систему и решаем её:

Ответ: 5

Смешав 45%-ный и 97%-ный растворы кислоты и добавив 10 кг чистой воды, получили 62%-ный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50%-ного раствора той же кислоты, то получили бы 72%-ный раствор кислоты. Сколько килограммов 45%-ного раствора использовали для получения смеси?

Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч . Каким будет расстояние (в километрах) между этими автомобилями через 15 минут после обгона?

Задание 9

На рисунке изображён график функции вида \(f(x)= ax^2 + bx + c,\) где числа \(a, b\; и \;c\) — целые. Найдите значение \(f(-12)\).

Формула функции – квадратный трёхчлен, график функции – парабола. Требуется определить значение функции в точке, которая не видна на графике, поэтому нужно воспользоваться формулой. Для этого сначала нужно уточнить формулу, т.е. определить неизвестные коэффициенты квадратного трёхчлена.

Три неизвестных коэффициента можно найти путём решения системы трёх линейных уравнений. Чтобы составить такую систему уравнений, берём на графике три «удобные» точки и подставляем их координаты в формулу функции.
Точки «удобны», если их координаты хорошо считываются, например, находятся в узлах сетки, или мы о них что-то знаем из теории. Для параболы очень хорошими точками являются вершина и точка пересечения с осью ординат. К сожалению, последняя на заданном участке графика также не видна.
На рисунке показаны выбранные мною точки, которые задают следующие соотношения \[x_в=-4\;\Rightarrow\;-\frac <2a>= -4;\\ f(-3)=-2\; \Rightarrow\;a(-3)^2 + b(-3) + c = -2;\\ f(-2)=1\;\Rightarrow\;a(-2)^2 + b(-2) + c = 1.\] Получили ситему уравнений \[ \begin -\dfrac <2a>= -4,\\ 9a -3b + c = -2,\\ 4a -2b + c = 1. \end\] Решаем её \[\begin b = 8a,\\9a -24a + c = -2,\\4a -16a + c = 1; \end\; \begin b = 8a,\\c = 15a-2,\\c = 12a+1; \end\; \begin b = 8a,\\0 = 3a-3,\\c = 12a+1; \end\; \begin b = 8,\\a = 1,\\c = 13.\\ \end\] Таким образом, уравнение функции имеет вид \(f(x)= x^2 + 8x + 13\), чтобы найти её значение в заданной точке, подставляем −12 в формулу \[f(-12)= (-12)^2 + 8\cdot(-12) +13 = 144-96+13 = 61.\]

Так как по графику хорошо считывается вершина параболы – точка с координатами (−4;−3), то имеет смысл вспомнить, что вершина параболы связана с коэффициентами квадратного трёхчлена формулами \[x_в = -\dfrac<2a>;\;y_в = -\dfrac<4a>.\] И формулу функции (квадратный трёхчлен) представить в преобразованном виде \[ax^2 + bx + c = a\left(x+\frac<2a>\right)^2-\frac <4a>= a(x-x_в)^2 + y_в = a(x+4)^2 -3.\] В формуле остался один неизвестный коэффициент. Чтобы найти его значение, считаем с графика координаты еще одной точки, например (−3;−2) и подставим их в уравнение. \[f(x) = a\left(x+4\right)^2 -3\\ -2 = a(-3+4)^2 -3\;\; \Rightarrow \;\; a = 1.\] Таким образом, формула приобрела вид \(f(x) = (x+4)^2 -3\). Подстановкой находим искомое значение \(f(-12) = (-12+4)^2 -3 = 64-3=61.\)

Ответ: 61

Задание 10

Симметричную игральную кость бросили три раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало три очка»?

Используем классическое определение вероятности \(P =\dfrac,\) где \(n -\) общее число исходов, \(m -\) число исходов, благоприятствующих запрашиваемому событию.
Чтобы найти количество исходов, рассмотрим из каких трёх слагаемых может состоять число 6.

1) 6 = 1+2+3;
2) 6 = 2+2+2;
3) 6 = 4+1+1.

При трёхкратном бросании игральной кости вариант 1 может реализоваться 6-ю способами, т.к. очки могут выпадать в любом порядке: перестановки из 3-ёх элементов 3! = 6.
Вариант 2 может реализоваться только одним способом.
Вариант 3 реализуется 3-мя способами: 4 очка могут выпасть при первом, или при втором, или при третьем бросании.
Итого \(n = 6+1+3 = 10.\)

В первом варианте тройка присутствует по одному разу в каждом из 6-ти способов. Во втором и третьем вариантах тройки вообще нет.
Итого \(m = 6.\) \[P =\frac = \frac<6> <10>= 0,6.\]

В городе 48% взрослого населения мужчины. Пенсионеры составляют 12,6% взрослого населения, причем доля пенсионеров среди женщин равна 15%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

Используем И/ИЛИ-правила (правила умножения/сложения вероятностей).

От долей населения в процентах перейдём к соответствующим вероятностям в десятичных дробях. (Это можно сделать, опираясь на такое доказательство: если в городе живёт N взрослых человек и 48% из них мужчины, то мужчин в городе живёт \(\dfrac<100>,\) тогда вероятность встретить взрослого мужчину составляет \(\dfrac <100\cdot N>= \dfrac<48> <100>= 0,48.)\)

Неизвестную вероятность события «выбранный мужчина является пенсионером» обозначим x. А находить будем вероятность другого, более общего события «выбранный взрослый житель города является пенсионером». Это событие можно записать так:

«Житель города является пенсионером, если он мужчина И при этом пенсионер ИЛИ она женщина И при этом пенсионер».

Учитывая независимость и несовместимость событий (один человек не может быть одновременно женщиной и мужчиной, быть и не быть персионером), к «И» применяем правило умножения вероятностей, к «ИЛИ» — правило сложения вероятностей. Получим формулу для вероятностей

В этой формуле введены такие обозначения

  • Событие П — «Житель города является пенсионером». Вероятность этого события P(П) = 0,126 находим в условии задачи (пенсионеры составляют 12,6% взрослого населения).
  • Событие М — «Этот житель города является мужчиной». Вероятность этого события P(М) = 0,48 находим в условии задачи.
  • Событие МП — «Выбранный мужчина является пенсионером». Вероятность этого события мы приняли за x.
  • Событие Ж — «Этот житель города является женщиной». Вероятность этого события P(Ж) = 1 − 0,48 = 0,52, так как оно противоположно событию «житель города мужчина».
  • Событие ЖП — «Выбранная женщина является пенсионеркой». Вероятность этого события P(ЖП) = 0,15 находим в условии задачи (доля пенсионеров среди женщин равна 15%).

Получаем уравнение 0,126 = 0,48·x + 0,52·0,15,
из которого находим 0,48x = 0,126 − 0,52·0,15 = 0,048;
x = 0,048/0,48 = 0,1.

Задание 11

Найдите наименьшее значение функции \[y = 9x — 9\ln <(x + 11)>+ 7\] на отрезке [−10,5; 0].

Ищем точку (точки, если их несколько), в которых производная равна нулю или не существует – точки возможных экстремумов.

\[y’ = (9x — 9\ln <(x + 11)>+ 7)’ = 9 — \frac<9> = \frac<9(x+10)>;\\ \frac = 0\; \Leftrightarrow \; x_1 = -10, \; x_2 = -11.\] Так как «подозрительных» точек внутри отрезка мало, точнее, всего одна \(x_1=-10\) (\(x_2 0 \\ y'(-12) = \dfrac<9(-12+10)> <-12+11>= \dfrac<-18> <-1>= 18 >0.\)

4) Делаем выводы: на заданном отрезке находится только точка минимума функции \(x = -10\), следовательно в ней и достигается наименьшее значение \(y(-10) = -83.\)

Замечание: Если всё-таки требуется оценить значения ln2 и ln11, нужно составить неравенства.
Вспомним, что натуральный логарифм — это логарифм по основанию \(e = 2,718. \) и функция lnx является монотонно возрастающей, поэтому
\(\sqrt -87,5+9\cdot0,5 > -83;\\ e^2 7-9\cdot3 > -83.\)

Найдите точку максимума функции \[y = (x + 8)^2\cdot e^<3-x>.\]

1) \(y’=\left((x + 8)^2\cdot e^<3-x>\right)’=\left((x + 8)^2\right)’\cdot e^<3-x>+(x + 8)^2\cdot\left( e^<3-x>\right)’ = \\ = 2(x+8)\cdot e^ <3-x>+(x + 8)^2\cdot e^<3-x>\cdot(3-x)’ = 2(x+8)\cdot e^ <3-x>— (x + 8)^2\cdot e^ <3-x>= \\= e^<3-x>\cdot(x+8)\cdot(2-x-8)=-e^<3-x>\cdot(x+8)\cdot(x+6);\)

2) \(-e^<3-x>\cdot(x+8)\cdot(x+6) = 0 \;\;\Leftrightarrow \;\;(x+8)(x+6)= 0 \;\; \Rightarrow\;\; x_1 = -8,\;x_2 = -6; \)

Найдите точку минимума функции \[y = -\frac.\]

2) \(\dfrac <(x^2+256)^2>= 0 \;\;\Leftrightarrow \;\;x^2-256 = 0 \;\; \Rightarrow\;\; x_ <1,2>= \pm16; \)

Чтобы получить наиболее высокие баллы, нужно продолжить подготовку и перейти к решению задач ЕГЭ по математике с развёрнутым ответом.


источники:

http://mathlesson.ru/Ege2022fipi-yashenko36var-2var

http://mathematichka.ru/ege/DEMO_part1_2022.html