Найдите корень уравнения егэ профиль математика

Задания по теме «Простейшие уравнения»

Открытый банк заданий по теме простейшие уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)

Задание №887

Условие

Найдите корень уравнения 5^<\log_<25>(10x-8)>=8.

Решение

Найдем ОДЗ: 10x-8>0.

10x-8=64, значит, условие 10x-8>0 выполняется.

Ответ

Задание №886

Условие

Найдите корни уравнения \cos\frac<\pi(x+5)><6>=0,5. В ответе напишите наибольший отрицательный корень.

Решение

а) \frac<\pi(x+5)><6>=\frac<\pi><3>+2\pi k, \frac<6>=\frac13+2k, x+5=2+12k, x=-3+12k.

Наибольший отрицательный корень данного вида x=-3.

б) \frac<\pi(x+5)><6>=-\frac<\pi><3>+2\pi k , \frac<6>=-\frac13+2k, x+5=-2+12k, x=-7+12k.

Наибольший отрицательный корень данного вида x=-7.

Значит, наибольший отрицательный корень уравнения x=-3.

Задание №1. Простейшие уравнения. Профильный ЕГЭ по математике

В задании №1 варианта ЕГЭ вам встретятся всевозможные уравнения: квадратные и сводящиеся к квадратным, дробно-рациональные, иррациональные, степенные, показательные и логарифмические и даже тригонометрические. Видите, как много нужно знать, чтобы справиться с заданием! И еще ловушки и «подводные камни», которые ждут вас в самом неожиданном месте.

Вот список тем, которые стоит повторить:

Уравнения, сводящиеся к квадратным

1. Решите уравнение . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Кажется, что уравнение очень простое. Но иногда здесь ошибаются даже отличники. А вот шестиклассник бы не ошибся.

С левой частью уравнения все понятно. Дробь умножается на А в правой части — смешанное число Его целая часть равна 19, а дробная часть равна Запишем это число в виде неправильной дроби:

Выбираем меньший корень.

Ответ: — 6,5.

2. Решите уравнение

Возведем в квадрат левую часть уравнения. Получим:

Дробно-рациональные уравнения

3. Найдите корень уравнения

Перенесем единицу в левую часть уравнения. Представим 1 как и приведем дроби к общему знаменателю:

Это довольно простой тип уравнений. Главное — внимательность.

Иррациональные уравнения

Так называются уравнения, содержащие знак корня — квадратного, кубического или n-ной степени.

4. Решите уравнение:

Выражение под корнем должно быть неотрицательно, а знаменатель дроби не равен нулю.

Значит, .

Возведём обе части уравнения в квадрат:

Условие при этом выполняется.

5. Решите уравнение Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

А в этом уравнении есть ловушка. Решите его самостоятельно и после этого читайте дальше.

Выражение под корнем должно быть неотрицательно. И сам корень — величина неотрицательная. Значит, и правая часть должна быть больше или равна нуля. Следовательно, уравнение равносильно системе:

Решение таких уравнений лучше всего записывать в виде цепочки равносильных переходов:

Мы получили, что . Это единственный корень уравнения.

Типичная ошибка в решении этого уравнения такая. Учащиеся честно пишут ОДЗ, помня, что выражение под корнем должно быть неотрицательно:

Возводят обе части уравнения в квадрат. Получают квадратное уравнение: Находят его корни: или Пишут в ответ: -9 (как меньший из корней). В итоге ноль баллов.

Теперь вы знаете, в чем дело. Конечно же, число -9 корнем этого уравнения быть не может.

6. Решите уравнение . Если уравнение имеет более одного корня, в ответе запишите больший из корней.

Запишем решение как цепочку равносильных переходов.

Показательные уравнения

При решении показательных уравнений мы пользуемся свойством монотонности показательной функции.

7. Решите уравнение

Вспомним, что Уравнение приобретает вид: Функция монотонно возрастает и каждое свое значение принимает только один раз. Степени равны, их основания, значит, и показатели равны.

8. Решите уравнение

Функция монотонно возрастает и каждое свое значение принимает только один раз. Степени равны, их основания, значит, и показатели равны.

9. Решите уравнение

Представим в виде степени с основанием 3 и воспользуемся тем, что

Логарифмические уравнения

Решая логарифмические уравнения, мы также пользуемся монотонностью логарифмической функции: каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, значит, равны и сами числа.

И конечно, помним про область допустимых значений логарифма:

Логарифмы определены только для положительных чисел;

Основание логарифма должно быть положительно и не равно единице.

10. Решите уравнение:

Область допустимых значений: . Значит,

Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.

Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом

11. Решите уравнение:

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

12. Решите уравнение:

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

Записываем решение как цепочку равносильных переходов.

13. Решите уравнение. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

В этом уравнении тоже есть ловушка. Мы помним, что основание логарифма должно быть положительно и не равно единице.

Первое уравнение мы получили просто из определения логарифма.

Квадратное уравнение имеет два корня: и

Очевидно, корень является посторонним, поскольку основание логарифма должно быть положительным. Значит, единственный корень уравнения:

Тригонометрические уравнения (Часть 1 ЕГЭ по математике)

Тригонометрические уравнения? В первой части вариантов ЕГЭ? — Да. Причем это задание не проще, чем задача 13 из второй части варианта Профильного ЕГЭ.

14. Найдите корень уравнения: В ответе запишите наибольший отрицательный корень.

Типичная ошибка — решать это уравнение в уме. Мы не будем так делать! Несмотря на то, что это задание включено в первую части варианта ЕГЭ, оно является полноценным тригонометрическим уравнением, причем с отбором решений.

Сделаем замену Получим:

Получаем решения: Вернемся к переменной x.

Поделим обе части уравнения на и умножим на 4.

Первой серии принадлежат решения

Вторая серия включает решения

Наибольший отрицательный корень — тот из отрицательных, который ближе всех к нулю. Это

15. Решите уравнение В ответе напишите наименьший положительный корень.

Сделаем замену Получим: Решения этого уравнения:

Вернемся к переменной х:

Умножим обе части уравнения на 4 и разделим на

Выпишем несколько решений уравнения и выберем наименьший положительный корень:

Наименьший положительный корень

Мы разобрали основные типы уравнений, встречающихся в задании №1 Профильного ЕГЭ по математике. Конечно, это не все, и видов уравнений в этой задаче существует намного больше. Именно поэтому мы рекомендуем начинать подготовку к ЕГЭ по математике не с задания 1, а с текстовых задач на проценты, движение и работу и основ теории вероятностей.
Успеха вам в подготовке к ЕГЭ!

Задание №5 ЕГЭ по математике профильного уровня

Простейшие уравнения

Задание №5 профильного уровня ЕГЭ по математике — решение простейшего уравнения, чаще всего степенного. Обычно, требуется сделать несколько операций и приравнять степени — после этого уравнение становится линейным и решается легко — как и любое линейное уравнение.

Разбор типовых вариантов заданий №5 ЕГЭ по математике профильного уровня

Первый вариант задания (демонстрационный вариант 2018)

Найдите корень уравнения 3 х-5 =81

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде степени.
  3. Отбрасываем основание и решаем уравнение.
  4. Записываем ответ.
Решение:

1. Данное уравнение относится к показательным. Поэтому решаем его, приведя к виду: а f(x) =a g(x) .

2. Представляем правую часть уравнения 81 в виде степени с основанием 3: 81=3 4 . Тогда уравнение примет вид: 3 х-5 =3 4 .

3. Так как основания одинаковы, можно отбросить их. Получаем: х – 5=4.

Решаем полученное уравнение: х=4+5,

Второй вариант задания (из Ященко, №1)

Найдите корень уравнения

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде степени с основанием 9.
  3. Отбрасываем основание и решаем уравнение.
  4. Записываем ответ.
Решение:

1. Данное уравнение является показательным. Решаем его, приводя к виду: а f(x) =a g(x) .

2. Число 81 справа представить в виде , откуда получаем в правой части .

Исходное уравнение принимает вид:

Так как у степеней в обеих частях уравнения равны, можно перейти к равенству степеней и решить уравнение:

Третий вариант задания (из Ященко, №4)

Найдите корень уравнения

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде степени с основанием 9.
  3. Отбрасываем основание и решаем уравнение.
  4. Записываем ответ.
Решение:

1. Уравнение показательного вида, значит можно решить его приведя к виду: f(x) a =g(x) a

2. Число представляем в виде степени с основанием 8: , тогда исходное уравнение можем записать таким образом:

Поскольку степени равны, должны быть равны и их основания. Имеем:

Четвертый вариант задания (из Ященко, №8)

Найдите корень уравнения

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде логарифма с основанием 7.
  3. Отбрасываем логарифм и решаем уравнение.
  4. Проверяем корни.
  5. Записываем ответ.
Решение:

1. Уравнение логарифмическое, приводимое к виду: logag(x)=logag(x).

2. Преобразуем правую часть уравнения так, чтобы там стоял логарифм с основанием 7:

Отбрасываем знак логарифма, получим:

Проверяем полученный корень на принадлежность ОДЗ: 9 – (-18)=27>0, значит, корень принадлежит ОДЗ.

Пятый вариант задания (из Ященко, №18)

Найдите корень уравнения

Алгоритм решения задания:
  1. Определяем вид уравнения.
  2. Представляем правую часть в виде логарифма с основанием 7.
  3. Отбрасываем логарифм и решаем уравнение.
  4. Проверяем корни.
  5. Записываем ответ.
Решение:

1. Уравнение логарифмическое, приводимое к виду: logag(x)=logag(x).

2. Преобразуем правую часть уравнения, чтобы там стоял логарифм с основанием 4. Для этого используем свойства логарифмов:

Решаем полученное уравнение:

Проверим на принадлежность ОДЗ: 2 – (-3)=5>0, корень принадлежит ОДЗ.


источники:

http://ege-study.ru/ru/ege/materialy/matematika/zadanie-1-prostejshie-uravneniya/

http://ezmath.ru/egje/profilnyj-uroven/zadanie-5/