Найдите сумму кубов корней квадратного уравнения

8.2.4. Применение теоремы Виета

Часто требуется найти сумму квадратов (x1 2 +x2 2 ) или сумму кубов (x1 3 +x2 3 ) корней квадратного уравнения, реже — сумму обратных значений квадратов корней или сумму арифметических квадратных корней из корней квадратного уравнения:

Помочь в этом может теорема Виета:

Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Выразим через p и q:

1) сумму квадратов корней уравнения x 2 +px+q=0;

2) сумму кубов корней уравнения x 2 +px+q=0.

Решение.

1) Выражение x1 2 +x2 2 получится, если взвести в квадрат обе части равенства x1+x2=-p;

(x1+x2) 2 =(-p) 2 ; раскрываем скобки: x1 2 +2x1x2+ x2 2 =p 2 ; выражаем искомую сумму: x1 2 +x2 2 =p 2 -2x1x2=p 2 -2q. Мы получили полезное равенство: x1 2 +x2 2 =p 2 -2q.

2) Выражение x1 3 +x2 3 представим по формуле суммы кубов в виде:

Еще одно полезное равенство: x1 3 +x2 3 =-p·(p 2 -3q).

Примеры.

3) x 2 -3x-4=0. Не решая уравнение, вычислите значение выражения x1 2 +x2 2 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения

x1+x2=-p=3, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 1) равенство:

x1 2 +x2 2 =p 2 -2q. У нас -p=x1+x2=3 → p 2 =3 2 =9; q=x1x2=-4. Тогда x1 2 +x2 2 =9-2·(-4)=9+8=17.

4) x 2 -2x-4=0. Вычислить: x1 3 +x2 3 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения x1+x2=-p=2, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 2) равенство: x1 3 +x2 3 =-p·(p 2 -3q)=2·(2 2 -3·(-4))=2·(4+12)=2·16=32.

Ответ: x1 3 +x2 3 =32.

Вопрос: а если нам дано не приведенное квадратное уравнение? Ответ: его всегда можно «привести», разделив почленно на первый коэффициент.

5) 2x 2 -5x-7=0. Не решая, вычислить: x1 2 +x2 2 .

Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x 2 -2,5x-3,5=0.

По теореме Виета сумма корней равна 2,5; произведение корней равно -3,5.

Решаем так же, как пример 3), используя равенство: x1 2 +x2 2 =p 2 -2q.

x1 2 +x2 2 =p 2 -2q=2,5 2 -2∙(-3,5)=6,25+7=13,25.

Ответ: x1 2 +x2 2 =13,25.

6) x 2 -5x-2=0. Найти:

Преобразуем это равенство и, заменив по теореме Виета сумму корней через -p, а произведение корней через q, получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x1 2 +x2 2 =p 2 -2q.

В нашем примере x1+x2=-p=5; x1∙x2=q=-2. Подставляем эти значения в полученную формулу:

7) x 2 -13x+36=0. Найти:

Преобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.

У нас x1+x2=-p=13; x1∙x2=q=36. Подставляем эти значения в выведенную формулу:

Совет: всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему способу, ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13, а произведение корней 36. Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!

Квадратные уравнения с параметром

Задачи с параметрами. Простейшие задачи на квадратный трёхчлен.

Сегодня мы рассмотрим задачи на квадратный трёхчлен, про который, в зависимости от параметра, надо будет что-то выяснить. Это «что-то» может быть самым разнообразным, насколько только хватит фантазии у составителей задачи. Это самый простой тип задач с параметрами. И, если на ЕГЭ вам попалась такая — считайте, что вам повезло!

Но, прежде чем приступать к разбору самих задач, ответьте сами себе на такие простые вопросы:

— Что такое квадратное уравнение, как оно выглядит и как решается?

— Что такое дискриминант и куда его пристроить?

— Что такое теорема Виета и где её можно применить?

Если вы верно отвечаете на эти простые вопросы, то 50% успеха в решении параметрических задач на квадратный трёхчлен вам обеспечены! А остальные 50% — это обычная алгебра и арифметика: раскрытие скобок, приведение подобных, решение уравнений, неравенств и систем и т.д.

Для начала рассмотрим совсем безобидную задачку. Для разминки. 🙂

Пример 1

Приступаем к решению. Во-первых, чтобы в будущем не накосячить в коэффициентах, всегда полезно выписать их отдельно. Прямо в столбик. Вот так:

Да-да! Часть коэффициентов в уравнении (а именно — b и с) зависит от параметра. В этом как раз и состоит вся фишка таких задач. А теперь снова въедливо перечитываем условие. Ключевой зацепкой в формулировке задания являются слова «единственный корень». И когда же квадратное уравнение имеет единственный корень? Подключаем наши теоретические знания о квадратных уравнениях. Только в одном единственном случае — когда его дискриминант равен нулю.

Осталось составить выражение для дискриминанта и приравнять его к нулю. Поехали!

Теперь надо приравнять наш дискриминант к нулю:

Можно, конечно, решать это квадратное уравнение через дискриминант, а можно немного схитрить. На что у нас похожа левая часть, если как следует присмотреться? Она у нас похожа на квадрат разности (a-3) 2 !

Респект внимательным! Верно! Если заменить наше выражение слева на (a-3) 2 , то уравнение будет решаться в уме!

Вот и всё. Это значит, что единственный корень наше квадратное уравнение с параметром будет иметь только в одном единственном случае — когда значение параметра «а» равно тройке.)

Это был разминочный пример. Чтобы общую идею уловить.) Теперь будет задачка посерьёзнее.

Пример 2

Вот такая задачка. Начинаем распутывать. Первым делом выпишем наше квадратное уравнение:

0,5x 2 — 2x + 3a + 1,5 = 0

Самым логичным шагом, было бы умножить обе части на 2. Тогда у нас исчезнут дробные коэффициенты и само уравнение станет посимпатичнее. Умножаем:

Выписываем в столбик наши коэффициенты a, b, c:

Видно, что коэффициенты a и b у нас постоянны, а вот свободный член с зависит от параметра «а»! Который может быть каким угодно — положительным, отрицательным, целым, дробным, иррациональным — всяким!

А теперь, чтобы продвинуться дальше, вновь подключаем наши теоретические познания в области квадратных уравнений и начинаем рассуждать. Примерно так:

«Для того чтобы сумма кубов корней была меньше 28, эти самые корни, во-первых, должны существовать. Сами по себе. В принципе. А корни у квадратного уравнения существуют, тогда и только тогда, когда его дискриминант неотрицательный. Кроме того, в задании говорится о двух различных корнях. Эта фраза означает, что наш дискриминант обязан быть не просто неотрицательным, а строго положительным

Если вы рассуждаете таким образом, то вы движетесь правильным курсом! Верно.) Составляем условие положительности для дискриминанта:

Полученное условие говорит нам о том, что два различных корня у нашего уравнения будет не при любых значениях параметра «а», а только при тех, которые меньше одной шестой! Это глобальное требование, которое должно выполняться железно. Неважно, меньше 28 наша сумма кубов корней или больше. Значения параметра «а», большие или равные 1/6, нас заведомо не устроят. Гуд.) Соломки подстелили. Движемся дальше.

Теперь приступаем к загадочной сумме кубов корней. По условию она у нас должна быть меньше 28. Так и пишем:

Значит, для того чтобы ответить на вопрос задачи, нам надо совместно рассмотреть два условия:

А дальше начинаем отдельно работать с этой самой суммой кубов. Есть два способа такой работы: первый способ для трудолюбивых и второй способ — для внимательных.

Способ для трудолюбивых заключается в непосредственном нахождении корней уравнения через параметр. Прямо по общей формуле корней. Вот так:

Теперь составляем нужную нам сумму кубов найденных корней и требуем, чтобы она была меньше 28:

А дальше — обычная алгебра: раскрываем сумму кубов по формуле сокращённого умножения, приводим подобные, сокращаем и т.д. Если бы корни нашего уравнения получились покрасивее, без радикалов, то такой «лобовой» способ был бы неплох. Но проблема в том, что наши корни выглядят немного страшновато. И подставлять их в сумму кубов как-то неохота, да. Поэтому, для того чтобы избежать этой громоздкой процедуры, я предлагаю второй способ — для внимательных.

Для этого раскрываем сумму кубов корней по соответствующей формуле сокращенного умножения. Прямо в общем виде:

А дальше проделываем вот такой красивый фокус: во вторых скобках выражаем сумму квадратов корней через сумму корней и их произведение. Вот так:

Казалось бы, и что из этого? Сейчас интересно будет! Давайте, посмотрим ещё разок на наше уравнение. Как можно внимательнее:

Чему здесь равен коэффициент при x 2 ? Правильно, единичке! А как такое уравнение называется? Правильно, приведённое! А, раз приведённое, то, стало быть, для него справедлива теорема Виета:

Вот и ещё одна теорема нам пригодилась! Теперь, прямо по теореме Виета, подставляем сумму и произведение корней в наше требование для суммы кубов:

Осталось раскрыть скобки и решить простенькое линейное неравенство:

Вспоминаем, что ещё у нас есть глобальное требование a 0 необходимо пересечь с условием a . Рисуем картинку, пересекаем, и записываем окончательный ответ.

Да. Вот такой маленький интервальчик. От нуля до одной шестой… Видите, насколько знание теоремы Виета, порой, облегчает жизнь!

Вот вам небольшой практический совет: если в задании говорится о таких конструкциях, как сумма, произведение, сумма квадратов, сумма кубов корней, то пробуем применить теорему Виета. В 99% случаев решение значительно упрощается.

Это были довольно простые примеры. Чтобы суть уловить. Теперь будут примеры посолиднее.

Например, такая задачка из реального варианта ЕГЭ:

Пример 3

Что, внушает? Ничего не боимся и действуем по нашему излюбленному принципу: «Не знаешь, что нужно, делай что можно!»

Опять аккуратно выписываем все коэффициенты нашего квадратного уравнения:

А теперь вчитываемся в условие задачи и находим слова «модуль разности корней уравнения». Модуль разности нас пока не волнует, а вот слова «корней уравнения» примем во внимание. Раз говорится о корнях (неважно, двух одинаковых или двух различных), то наш дискриминант обязан быть неотрицательным! Так и пишем:

Что ж, аккуратно расписываем наш дискриминант через параметр а:

А теперь решаем квадратное неравенство. По стандартной схеме, через соответствующее квадратное уравнение и схематичный рисунок параболы:

Значит, для того чтобы у нашего уравнения в принципе имелись хоть какие-то корни, параметр а должен находиться в отрезке [-1; 3]. Это железное требование. Хорошо. Запомним.)

А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука

принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x1 — x2. Теорема Виета здесь в этот раз бессильна.

Что ж, считаем корни по общей формуле:

Дальше составляем модуль разности этих самых корней:

Теперь вспоминаем, что корень квадратный — величина заведомо неотрицательная. Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:

И эта функция f(a) должна принимать наибольшее значение. А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная! Вперёд и с песнями!)

Дифференцируем нашу функцию и приравниваем производную к нулю:

Получили единственную критическую точку a = 2. Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).

Слева от двойки производная положительна, а справа от двойки — отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию мы рассматриваем только на отрезке [1; 3]. Вне этого отрезка нашей функции f(a) попросту не существует. Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.

Всё. Вот теперь наша задача полностью решена.

Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное — не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).

Пример 4

Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?

Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)

При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным. То есть, первое наше требование будет D > 0.

А далее по накатанной колее. Считаем дискриминант:

D = 4(a-1) 2 — 4a(a-4) = 4a 2 -8a+4-4a 2 +16a = 4+8a

Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.

Далее в задаче идёт речь о расстоянии между корнями. Расстояние между корнями, в математическом смысле, означает вот такую величину:

Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) — величина неотрицательная. Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль — функция чётная и сжигает минус. Точно так же, как и квадрат.

Значит, ответом на вопрос задачи является решение вот такой системы:

Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:

Отлично. Корни получены. Теперь начинаем формировать наше расстояние:

Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:

Неравенство — не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль — величина неотрицательная.

Итак, смело умножаем обе части неравенства на положительное число |a|. Знак неравенства сохраняется:

Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая — когда параметр а, стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.

Случай 1 (a>0, |a|=a)

В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:

Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:

Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно — случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются.

Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:

А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a>0. С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a 0 и a

Упрощаем нашу совокупность с учётом главного условия a>0:

Вот так. А теперь решаем самое обычное квадратное неравенство:

Нас интересует промежуток между корнями. Стало быть,

Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:

Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:

Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.

Случай 2 (a

В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:

Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):

С учётом общего требования a

А дальше снова решаем обычное квадратное неравенство:

И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1! Решение этого неравенства выглядело вот так:

Осталось лишь пересечь этот интервал с нашим новым условием a

Вот и второй кусочек ответа готов:

Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число

с нулём. Вот так:

А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему):

Готово дело. Эти два интервала — это пока ещё только решение неравенства

Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!

Ещё у нас есть условие положительного дискриминанта! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества:

Но есть одна проблемка. Мы не знаем, как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа:

Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:

Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:

Всё, задача полностью решена и можно записывать окончательный ответ.

Ну как? Уловили суть? Тогда решаем самостоятельно.)

1. Найдите все значения параметра b, при которых уравнение

ax 2 + 3x +5 = 0

имеет единственный корень.

2. Найдите все значения параметра а, при каждом из которых больший корень уравнения

x 2 — (14a-9)x + 49a 2 — 63a + 20 = 0

3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения

x 2 — 4ax + 5a = 0

4. Найдите все значения параметра а, при каждом из которых уравнение

x 2 + 2(a-2)x + a + 3 = 0

имеет два различных корня, расстояние между которыми больше 3.

Алгебра

Квадратные уравнения

План урока:

Определение квадратного уравнения

Изучая понятие многочленов, мы познакомились с квадратными трехчленами. Так называют полином 2-ой степени, содержащий только одну переменную. Если его приравнять к нулю, то получится квадратное уравнение. Дадим определение квадратному уравнению:

Приведем несколько конкретных примеров:

  • 5х 2 + 4х + 7 = 0
  • – 3х 2 + х – 1,5 = 0
  • 0,05х 2 + 99,568х – 47,21 = 0

Числа a, b и с называют коэффициентами квадратного уравнения. Отметим, что числа b и c могут равняться нулю, и в этом случае соответствующее слагаемое просто не записывается:

Эти уравнения именуют неполными.

Если же коэффициент а=0, то получается линейное уравнение, которое мы уже умеем решать:

Естественно, что для обозначения переменной может использоваться любая буква, а не только х:

  • у 2 + 3,5х – 93 = 0
  • – 32z 2 + 11z – 78 = 0

Для обозначения коэффициентов могут использоваться специальные термины:

  • а – старший коэффициент;
  • b– второй коэффициент;
  • с – свободный член.

Неполные квадратные уравнения можно очень легко решить. Сначала рассмотрим пример, в котором b = 0:

Перенесем вправо свободный коэффициент:

Далее поделим на старший коэффициент обе части равенства:

Понятно, что х равен квадратному корню из 9. Напомним, что у каждого положительного числа есть два квадратных корня! Один из них является положительным числом и называется арифметическим, а другой противоположен ему по знаку. Поэтому можно записать, что

Иногда используют более короткую запись:

Не любое квадратное уравнение, у которого нет второго коэффициента b, будет иметь решение. Рассмотрим уравнение

Будем решать его таким же путем, перенося свободный коэффициент c вправо и деля уравнение на старший коэффициент a:

Квадрат действительного числа не может быть отрицательным. Значит, данное уравнение не будет иметь корней.

Сформулируем общий алгоритм решения неполных квадратных уравнений такого типа:

Теперь изучим неполные уравнения, в которых нет свободного слагаемого с. Рассмотрим их на примере:

Слева вынесем переменную х за скобки:

Теперь слева находится произведение двух множителей, а справа – ноль. Очевидно, что произведение может равняться нулю лишь в том случае, когда один из составляющих его множителей (х или 7х + 21) является нулем.

Зная это, запишем:

х = 0 или 7х + 21 = 0

Получили корень х = 0 и ещё одно линейное уравнение, которое легко решить:

В результате имеем два корня: 0 и – 3

Опишем общий алгоритм решения этих неполных уравнений:

Решение квадратного уравнения

Найти решение квадратного уравнения, если оно полное, достаточно тяжело. Нам поможет формула квадрата суммы:

(а + b) 2 = a 2 + 2ab + b 2

Напомним, что с ее помощью можно разложить на множители некоторые квадратные полиномы:

х 2 + 8х + 16 = х 2 + 2•4•х + 4 2 = (х + 4) 2

Конечно, здесь нам повезло с квадратным трехчленом – его коэффициенты позволяли воспользоваться формулой квадрата суммы. Однако похожие преобразования можно выполнить и тогда, когда коэффициенты не такие удобные:

х 2 + 8х + 20 = х 2 + 8х + 16 + 4 =(х 2 + 8х + 16) + 4 = (х 2 + 2•4•х + 4 2 ) + 4 =

Здесь мы разложили число 20 на сумму 16 + 4, чтобы можно было часть выражения «свернуть» формулой квадрата суммы. Такой прием можно применить вообще к любому квадратному трехчлену:

4х 2 + 10х + 4 = (2х) 2 + 2•2х•2,5 + 2,5 2 – 2,5 2 + 4 = (2х + 2,5) 2 – 2,5 2 + 4 =

= (2х + 2,5) 2 – 6,25 + 4 = (2х + 2,5) 2 – 2,25

Здесь мы добавили к трехчлену слагаемое 2,5 2 и тут же его отняли. Оно было необходимо для получения формулы квадрата суммы.

Отметим, что подобное свертывание можно использовать для решения квадратного уравнения. Действительно, пусть дано уравнение

4х 2 + 10х + 4 = 0

Выше мы уже преобразовали трехчлен, стоящий слева. Произведем замену:

(2х + 2,5) 2 – 2,25 = 0

Имеем уравнение, очень похожее на неполное, где отсутствует коэффициент b. Попробуем его решить аналогичным путем:

Из этой записи мы получили два линейных уравнения:

2х + 2,5 = – 1,5 или 2х + 2,5 = 1,5

Решая их, находим два корня:

2х = – 1,5 – 2,5 или 2х = 1,5 – 2,5

2х = – 4 или 2х = – 1

х = – 2 или х = – 0,5

Аналогично можно решить и любое другое полное квадратное уравнение. Однако проще пользоваться специальными формулами, в которые надо подставлять значения коэффициентов a, b, с и получать корни квадратного уравнения. Выведем эти формулы.

Пусть есть уравнение

Поделим обе части уравнения на коэффициент а:

Далее надо выделить квадрат суммы, что бы потом свернуть его по формуле сокращенного умножения:

Далее обозначим числитель в правой части (b 2 – 4ac) буквой D. Эту величину называют дискриминантом квадратного уравнения.

Перепишем уравнение с учетом этой замены:

Далее рассмотрим три случая:

  1. D 2 – заведомо положительное число). Слева стоит квадрат выражения, а он никак не может оказаться отрицательным. В итоге имеем, что при отрицательном дискриминанте у уравнения отсутствуют корни.
  2. D = 0. При таком варианте справа получается ноль:

Квадрат только одного числа равен нулю – самого нуля, поэтому

Итак, при нулевом дискриминанте у уравнения есть только один корень.

  1. D> 0. В этом варианте дробь справа оказывается положительным числом, а потому у нее есть два квадратных корня. Решение будет выглядеть так:

Полученное выражение называют основной формулой корней квадратного уравнения.

Если дискриминант – положительное число, то уравнение существует два корня. Для вычисления первого из них надо в формуле квадратного уравнения вместо знака ± поставить минус, а для вычисления второго – знак плюс. Часто 1-ый корень обозначают как х1, а 2-ой – как х2. Заметим, что если D = 0, то при подстановке в основную формулу будет получаться один и тот же корень независимо от выбора знака плюс или минус.

Пример. Решите уравнение

2х 2 – 5х – 3 = 0

Решение. Выпишем коэффициенты уравнения

Вычислим значение дискриминанта:

D = b 2 – 4ас = (– 5) 2 – 4•2•(– 3) = 25 + 24 = 49

Так как он больше нуля, то должно получиться два корня. Их можно найти по основной формуле квадратного уравнения:

Пример. Найдите все корни уравнения

3х 2 + 6х + 5 = 0

Решение. Найдем дискриминант:

D = b 2 – 4ас = 6 2 – 4•3•5 = 36 – 60 = – 24

Дискриминант оказался отрицательным, значит, и корней у уравнения нет.

Ответ: нет корней.

Пример. Найдите значения х, при которых выполняется равенство

4х 2 – 12х + 9 = 0

Решение. Вычислим дискриминант:

D = (– 12) 2 – 4•4•9 = 144 – 144 = 0

Так как D = 0, существует лишь один корень:

Пример. Найдите значения у, при которых справедливо равенство

2у 2 + 4у + 9 = у 2 + 11у + 3

Решение. На первый взгляд это уравнение не похоже на изучавшие до этого квадратные уравнения. Однако слагаемые, записанные справа, можно перенести влево, после чего можно будет привести подобные слагаемые:

2у 2 + 4у + 9 = у 2 + 11у + 3

2у 2 + 4у+ 9–у 2 – 11у– 3 = 0

Получили классическое квадратное уравнение, для которого можно рассчитать дискриминант:
D = b 2 – 4ас = (– 7) 2 – 4•1•6 = 49 – 24 = 25

Найдем значения двух корней:

Уравнения, сводящиеся к квадратным

Так как любое квадратное уравнение решается довольно легко, то другие, более сложные уравнения, часто пытаются свести к квадратным. Сначала рассмотрим так называемые биквадратные уравнения. Пусть надо решить уравнение

2х 4 –26х 2 + 72 = 0

На первый взгляд в левой части стоит полином четвертой, а не второй степени, то есть это уравнение не является квадратным. Введем переменную t, равную х 2 :

Если это выражение возвести в квадрат, то получим

t 2 = (х 2 ) 2 = х 4

Теперь заменим в исходном уравнении х 4 на t 2 , а х 2 на t:

2t 2 –26t + 72 = 0

Получили квадратное уравнение, из которого можно найти значение t. Посчитаем дискриминант:

D = (– 26) 2 – 4•2•72 = 676 – 576 = 100

Можно найти два значения t:

Однако нам надо найти значение х, а не t. Вспомним, что мы проводили замену

Подставляя вместо t найденные корни 4 и 9, получим ещё два уравнения:

Первое имеет корни (– 2) и 2, а второе (– 3) и 3. Все эти 4 числа являются корнями исходного уравнения

2х 4 – 26х 2 + 72 = 0

Уравнения, которые можно свести к квадратному заменой переменных t = x 2 , называют биквадратными уравнениями.

Мы рассмотрели пример, в котором биквадратное уравнение имело 4 корня. Однако порою их может быть и меньше.

Пример. Укажите все корни уравнения

у 4 + 4у 2 – 5 = 0

Решение. Данное уравнение подходит под определение биквадратного, а потому произведем замену t = y 2 :

D = 4 2 – 4•1•(– 5) = 16 – (– 20) = 36

далее проводим обратную замену и получаем уравнения:

Первое из них не имеет решения, ведь квадрат числа – это неотрицательное число. Поэтому решать придется только второе уравнение:

Подстановка t = x 2 самая простая и очевидная, однако, порою нужно выполнять более сложные подстановки.

Пример. Найдите все z, для которых выполняется условие

(z – 2)(z – 3)(z – 4)(z – 5) = 24

Решение.Замена неочевидна, и всё же попробуем такой вариант:

Тогда содержимое каждой скобки примет вид:

z– 2 = z– 3,5 + 1,5 = t + 1,5

z– 3 = z– 3,5 + 0,5 = t + 0,5

z– 4 = z– 3,5 – 0,5 = t–0,5

z– 5 = z – 3,5 – 1,5 = t–1,5

Уравнение примет вид:

(t + 1,5)(t + 0,5)(t – 0,5)(t – 1,5) = 24

Поменяем местами скобки:

(t – 0,5)(t + 0,5)(t – 1,5)(t + 1,5) = 24

Можно заметить, что в соседние скобки можно переписать, используя формулу разности квадратов:

(t 2 – 0,5 2 )(t 2 – 1,5 2 ) = 24

Для удобства произведем ещё одну замену s = t 2 :

(s– 0,5 2 )(s– 1,5 2 ) = 24

Раскроем скобки в левой части:

s 2 – 2,25s– 0,25s + 0,5625 = 24

s 2 – 2,5s + 0,5625– 24 = 0

s 2 – 2,5s– 23,4375 = 0

Получили классическое квадратное уравнение, которое решается через дискриминант:

D = (– 2,5) 2 – 4•1•(– 23,4375) = 6,25 + 93,75 = 100

Произведем 1-ую обратную замену t 2 = s:

Первое уравнение решений не имеет, а у второго ровно 2 корня:

Пришло время второй замены z– 3,5 = t, из которой получаем два уравнения:

z– 3,5 = – 2,5 или z– 3,5 = 2,5

z= – 2,5 + 3,5 или z= 2,5 + 3,5

Задачи, решаемые с помощью квадратных уравнений

При рассмотрении задач, связанных с геометрией, свойствами чисел, движением тел, очень часто возникают квадратные уравнения.

Пример. Площадь прямоугольника составляет 126 см 2 , а одна из его сторон на 5 см длиннее другой. Каковы длины сторон этого прямоугольника?

Решение. Обозначим как k длину той стороны прямоугольника, которая меньше. Тогда протяженность второй стороны будет равна k + 5 см. Площадь прямоугольника – это произведение его сторон, а потому можно записать:

Решим это уравнение:

k 2 + 5k – 126 = 0

D = 5 2 – 4•1•(– 126) = 25 + 504 = 529

Первый корень равен (– 14). Однако ясно, что длина стороны прямоугольника не может измеряться отрицательным числом, поэтому этот корень надо отбросить. Остается только k = 9. То есть длина первой стороны равна 9 см. Вторая сторона равна k + 5, то есть 9 + 5 = 14 см.

Ответ: 9 и 14 см.

Пример. Сумма квадратов двух последовательных нечетных чисел составляет 290. Что это за числа?

Решение. Обозначим первое число как n. Нечетные числа чередуются с четными, поэтому следующим нечетным числом будет n + 2. Перепишем условие задачи в виде уравнения и найдем его корни:

n 2 + (n + 2) 2 = 290

n 2 + n 2 + 4n + 4 – 290 = 0

2n 2 + 4n – 286 = 0

D = 4 2 – 4•2•(– 286) = 16 + 2288 = 2304

Получили два решения. Если первое число равно – 13, то второе составит n + 2 = – 11. Если же n = 11, то второе число будет равно 13.

Ответ: – 13 и 11, либо 11 и 13.

Теорема Виета

Большое значения имеют уравнения, у которых старшим коэффициентом является единица. Математики называют их приведенными уравнениями.

Дадим несколько примеров приведенных квадратных уравнений:

  • х 2 + 6х + 29 = 0
  • у 2 – 7,54у + 87 = 0
  • z 2 + 21z + 112 = 0

Название «приведенное» возникло из-за того, что каждое квадратное уравнение можно сделать приведенным, если поделить его части на коэффициент перед х 2 . Пусть есть уравнение

Поделим на 4 обе его части:

х 2 + 1,25х + 1,5 = 0

Для приведенного уравнения сформулирована теорема Виета, которая указывает на взаимосвязь его корней и коэффициентов:

Доказать это очень легко. Если у уравнения

существует два корня, то они вычисляются по формулам:

Найдем их сумму:

Аналогично можно посчитать и их произведение:

Естественно, если у уравнения не существует корней (D 2 – 8х + 15 = 0; корни (х1 и х2) равны 3 и 5, в чем можно убедиться подстановкой:

Перемножим корни и получим 3•5 = 15 (свободный член), при сложении корней получается 3 + 5 = 8 (второй коэффициент без минуса);

  1. у 2 + 13у + 42= 0, корни (– 6) и (– 7), произведение корней 42, сумма корней – 13;
  2. х 2 + 2х – 8 = 0, корни (– 4) и 2, их сумма равна (– 2), а произведение (– 8).

Справедливо и утверждение, известное как обратная теорема Виета:

Возьмем числа 4 и 9. Их сумма равна 13, а произведение 36, поэтому они являются корнями уравнения:

х 2 – 13х + 36 = 0

в чем можно убедиться, подставив их вместо х.

Пример. Учитель математики перед уроком составляет квадратные уравнения, причем стремится к тому, чтобы у них были целые корни (чтобы детям было просто считать). Подскажите ему пример уравнения, чьи корни равны 3 и 8.

Решение. Перемножим и сложим числа 3 и 8:

Соответственно, уравнением с корнями 3 и 8 будет

х 2 – 11х + 24 = 0

Ответ: х 2 – 11х + 24 = 0

Разложение квадратного трехчлена на множители

При решении уравнения

мы находим его корни. Однако отдельно выделяют и такое понятие, как корень многочлена. Так называют значение переменной, которая обращает полином в ноль.

Понятно, что для нахождения корней полинома второй степени следует решить квадратное уравнение.

Сначала рассмотрим трехчлены, у которых коэффициент при х 2 а равен 1. Предположим, что нам удалось разложить его на произведение двух линейных полиномов:

х 2 + bх + с = (х –s)(х –k)

где s и k– какие-то произвольные числа.

Выражение справа является произведением, а потому обращается в ноль только тогда, когда нулю равен один из множителей:

х – s = 0 или х – k = 0

Так как при х = s или х = k в ноль обращается правая часть тождества, то также должна обращаться и левая часть. Получается, что числа s и k – это корни трехчлена х 2 + bх + с.

Убедимся в этом, раскрыв скобки в правой части тождества:

(х –s)(х –k) = х 2 –kx–sx + sk = х 2 – (k + s)х + sk

подставим это выражение в исходное равенство:

х 2 + bх + с = (х – s)(х — k) = х 2 – (k + s)х + sk

х 2 + bх + с = х 2 – (k + s)х + sk

Получается, произведение s и k дает свободный член, а их сумма в точности равна коэффициенту при х, взятому со знаком минус. Значит, по теореме Виета, они являются корнями уравнения!

Обозначим корни уравнения как х1 и х2. Если у трехчлена коэффициент а отличен от единицы, то эта формула (ее называют формулой разложения квадратного трехчлена на множители) примет несколько иной вид:

То есть справедливо утверждение:

А теперь и докажем его.

Пусть есть уравнение ах 2 + bx + c = 0 с корнями х1 и х2. Поделим его на а:

х 2 + (b/a)х + с/а = 0

по теореме Виета можно записать:

Умножив первое тождество на (– а), а второе наа, получим

Осталось подставить эти равенства в исходный многочлен:

Для чего же мы доказывали эту теорему? С ее помощью можно выполнить разложение квадратного трехчлена на множители. Проиллюстрируем это на примерах.

Пример. Разложите полином

2х 2 + 12х – 14

на множители.

Решение. Для начала следует решить уравнение 2х 2 + 12х – 14 = 0:

D = 12 2 – 4•2•(– 14) = 144 + 112 = 256

Найдя х1 и х2, можем выполнить и разложение:

2х 2 + 12х – 14 = 2(х – 1)(х – (– 7)) = 2(х – 1)(х + 7)

Ответ: 2(х – 1)(х + 7)

Пример. Упростите выражение

Решение. На первый взгляд кажется, что сокращать нечего. Однако и в числителе, и в знаменателе находятся квадратные трехчлены. Разложим их на множители, решив соответствующие уравнения:

D = 2 2 – 4•1•(– 15) = 4 + 60 = 64

h 2 – 2h– 15 = (h+ 5)(h– 3)

Теперь раскладываем второй полином:

D = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Соответственно, можно записать:

h 2 – 9h +18 = (h– 3)(h– 6)

А теперь подставим в исходную дробь полученные выражения:

Отметим, что если у полинома второй степени нет корней, то и разложить его на множители не получится.

Дробно-рациональные уравнения

Периодически приходится сталкиваться с уравнениями, где переменные присутствуют в знаменателе какой-нибудь дроби. Их называют дробно-рациональными уравнениями. Обычно их можно свести к более простому виду, но при этом следует учитывать ту особенность, что корень уравнения не должен обращать знаменатель в ноль.

Пример. Найдите решение дробно-рационального уравнения

Решение. Для начала перенесем дробь из правой части в левую, а потом приведем дроби к общему знаменателю:

Умножим уравнение на величину (х – 2)(х + 3)

(х + 1)(х – 2) + 10х – 4(х + 3) = 0

х 2 – 2х + х – 2 + 10х – 4х – 12 = 0

D = 5 2 – 4•1•(– 14) = 25 + 56 = 81

Казалось бы, мы нашли два корня: 2 и (– 7). Однако в исходном уравнении в знаменателе стоит выражение (х – 2)(х – 3). При х = 2 оно обращается в нуль, то есть дробь потеряет смысл. Поэтому корень 2 следует отбросить, и остается лишь корень (– 7)


источники:

http://abudnikov.ru/ege/chast-2.2/zadachi-s-parametrami/kvadratnyie-uravneniya-s-parametrom.html

http://100urokov.ru/predmety/urok-4-kvadratnye-uravneniya