Найдите целые положительные решения уравнения

Готовимся к ЕГЭ
презентация к уроку алгебры (11 класс) на тему

Решение уравнений и неравенств в целых числах

Скачать:

ВложениеРазмер
uravneniya_i_neravenstva_v_celyh_chislah.ppt558 КБ

Предварительный просмотр:

Подписи к слайдам:

Реферат на тему Уравнения и неравенства в целых числах

1. Соображения делимости 2. Метод разложения на множители 3. Графический метод решения 4. Метод решения уравнения относительно одного из неизвестных 5. Метод перебора

Соображения делимости Найти целые положительные решения уравнения 2 x 2 + 2 xy – x + y = 112. Решение. Данное уравнение линейно относительно y : y (2 x + 1) = 112 + x – 2 x 2 . Так как x , y N , то 2 x + 1 0 , поэтому: 2 x + 1 = 1, 2 x + 1 = 3, 2 x + 1 = 37, 2 x + 1 = 111; x = 0, y = 112, x = 1, y = 37, x = 18, y = -14, x = 55, y = -53. После проверки получаем одно целое положительное решение x = 1, y = 37. Ответ: (1; 37).

Метод разложения на множители Решение . Из первого условия следует, что m (2 n + 3) = 10, причём m – целое, а 2 n + 3 – целое и нечётное. Следовательно, возможны следующие варианты: 1. m = 2, 2 n + 3 = 5; m = 2, n = 1; m + n = 3 5 – верно; 4 . m = -10, 2 n + 3 = -1; m = -10, n = -2; m + n = -12 Мне нравится

Математический детектив: поиск положительных целых решений уравнения

«Я экспериментировал с задачами кубического представления в стиле предыдущей работы Эндрю и Ричарда Гая. Численные результаты были потрясающими…» (комментарий на MathOverflow)

Вот так ушедший на покой математик Аллан Маклауд наткнулся на это уравнение несколько лет назад. И оно действительно очень интересно. Честно говоря, это одно из лучших диофантовых уравнений, которое я когда-либо видел, но видел я их не очень много.

Я нашёл его, когда оно начало распространяться как выцепляющая в сети нердов картинка-псевдомем, придуманная чьим-то безжалостным умом (Сридхар, это был ты?). Я не понял сразу, что это такое. Картинка выглядела так:

«95% людей не решат эту загадку. Сможете найти положительные целочисленные значения?»

Вы наверно уже видели похожие картинки-мемы. Это всегда чистейший мусор, кликбэйты: «95% выпускников МТИ не решат её!». «Она» — это какая-нибудь глупая или плохо сформулированная задачка, или же тривиальная разминка для мозга.

Но эта картинка совсем другая. Этот мем — умная или злобная шутка. Примерно у 99,999995% людей нет ни малейших шансов её решить, в том числе и у доброй части математиков из ведущих университетов, не занимающихся теорией чисел. Да, она решаема, но при этом по-настоящему сложна. (Кстати, её не придумал Сридхар, точнее, не он полностью. См. историю в этом комментарии).

Вы можете подумать, что если ничего другое не помогает, то можно просто заставить компьютер решать её. Очень просто написать компьютерную программу для поиска решений этого кажущегося простым уравнения. Разумеется, компьютер рано или поздно найдёт их, если они существуют. Большая ошибка. Здесь метод простого перебора компьютером будет бесполезен.

Не знаю, удастся ли уместить полное решение в статью, если не принять, что все уже знают всё необходимое об эллиптических кривых. Я могу привести здесь только краткий обзор. Основной справочный источник — это чудесная, относительно недавняя работа Бремнера и Маклауда под названием «An unusual cubic representation problem» («Необычная проблема кубического представления»), опубликованная в 2014 году в Annales Mathematicae et Informaticae.

Мы ищем положительные целочисленные решения уравнения

(я заменил обозначения переменных теми, которые используются в работе).

Первое, что нужно сделать, исследуя любое уравнение — попробовать поместить его в нужный контекст. Надо задать вопрос: что это за уравнение? Так, нас просят найти целочисленные решения, то есть это задача теории чисел. В текущей формулировке в уравнении используются рациональные функции (многочлены, делящиеся на другие многочлены), но очевидно, что мы можем домножить на общее кратное знаменателей, чтобы подчистить уравнение и получить только многочлены, то есть привести его к виду диофантова уравнения. Требование «положительности» довольно необычно, и, как мы увидим, усложняет всё.

Итак, сколько же у нас тут переменных? Вопрос кажется глупым: очевидно, что три, а именно , и . Но не торопитесь. Опытный исследователь теории чисел мгновенно заметит, что уравнение однородное. Это значит, что если является одним из решений уравнения, то решением является и . Понимаете, почему? Умножив каждую переменную на какую-нибудь постоянную ( — это просто пример), мы ничего не изменим, потому что константа в каждой из частей сокращается.

Это значит, что уравнение только притворяется трёхмерным. На самом деле оно двухмерно. В геометрическом представлении у нас есть поверхность (одно уравнение с тремя переменными в общем случае задаёт двухмерную поверхность. В целом, уравнений с переменными задают -мерное многообразие, где ). Но эта поверхность на самом деле ограничена линией, колеблющейся и проходящей через начало координат. Получившуюся поверхность можно понять, разобравшись в том, как она рассекает единичную плоскость. Это проективная кривая.

Проще всего объянить это сведение можно так: мы можем разделить решения, какими бы они ни были, на те, при которых , и те, при которых . В первом случае у нас остаётся всего две переменные, и , а во втором мы просто можем разделить на и получить решение при . Поэтому мы можем просто искать рациональные решения в и для случая , умножать их на общий делитель и получать целочисленное решение в , и . В сущности, целочисленные решения однородных уравнений соответствуют рациональным решениям неоднородной версии, которая на одну размерность меньше.

Продолжим: какова степень нашего уравнения? Степень уравнения — это максимальная степень, любого появляющаяся в уравнении одночлена, где «одночлен» — это произведение нескольких переменных, чья «степень» является количеством перемножаемых одночленов. Например, будет одночленом степени .

Поведение диофантовых уравнений сильно зависит от их степени. В целом:

  • Со степенью всё просто.
  • Степень полностью проанализирована и может быть решена довольно элементарными способами.
  • Степень — это обширный океан глубокой теории и миллион нерешённых проблем.
  • Степень и выше… Очень, очень сложны.

Мы имеем степень . Почему? Мы просто умножаем на делители:

Даже без раскрывания скобок можно увидеть, что степень равна : мы никогда не перемножаем более трёх переменных за раз. У нас получатся части типа , и , но никогда не будет чего-то больше трёх множителей. Если провести преобразования, то уравнение будет иметь вид

Вы можете возразить, что умножение на делители невозможно, если какие-то из них оказываются равны . Это верно — действительно, наше новое уравнение имеет несколько решений, не соответствующих исходному уравнению. Но на самом деле это хорошо. Версия с многочленами добавляет к оригиналу несколько «заплаток» и с ним становится проще работать. Нам просто нужно будет проверять, не исчезают ли исходные делители при каждом конкретном решении.

На самом деле уравнение с многочленами легко решить, например, , , . Это хорошо: у нас есть рациональное решение (рациональная точка). Это значит, что наше кубическое уравнение (степень = 3) на самом деле является эллиптической кривой.

Когда обнаруживаешь, что уравнение представляет собой эллиптическую кривую, то а) радуешься и б) отчаиваешься, потому что предстоит ещё много чего изучить. Это уравнение — прекрасный пример того, как мощную теорию эллиптических кривых можно применить к нахождению безумно сложно определяемых решений.

Первое, что обычно делают эллиптической кривой — приводят её в вейерштрассову форму. Это уравнение, которое выглядит как

(это называется развёрнутой вейерштрассовой формой. Она необязательна, но иногда более удобна).

Обычно любую эллиптическую кривую можно привести к такому виду (если вы только не работаете над полями с малыми характеристиками, но здесь нам не нужно о них волноваться). Объяснять способ поиска правильного преобразования было бы слишком долго, поэтому просто знайте, что это абсолютно механический процесс (критически важно в нём то, чтобы была хотя бы одна рациональная точка, которая у нас есть). Существуют разные пакеты вычислительной алгебры, которые сделают всё за вас.

Но даже если вы не знаете. как найти преобразование, проверить его очень просто, по крайней мере, это выполняется чисто механически. Необходимое преобразование в нашем случае задаётся страшно выглядящими формулами

Я знаю, что они похожи на неизвестно откуда взявшуюся магию вуду, но поверьте, это не так. Получив эти преобразования, с помощью монотонных, но довольно простых алгебраических расчётов мы покажем, что

Это уравнение, хоть и выглядит совсем по-другому, на самом деле является достоверной моделью исходного. Графически оно выглядит так — типичная эллиптическая кривая с двумя вещественными частями:

«Рыбий хвост» справа растёт «в бесконечность и дальше». Овальная фигура слева является замкнутой и оказывается для нас довольно интересной.

Имея любое решение этого уравнения, мы можем восстановить необходимые значения , , с помощью уравнений

(Помните, что триплет нужно воспринимать проективно – какие бы значения вы ни получили с помощью этих уравнений, их всегда можно умножить на любую константу).

Два показанных нами отображения, из , , в , и наоборот, показывают, что эти два уравнения «одинаковы» с точки зрения теории чисел: рациональные решения одного дают рациональные решения другого. Технически это называется бирациональной эквивалентностью, а она является фундаментальным понятием алгебраической геометрии. Как мы уже заметили, могут существовать точки-исключения, которые не отображаются правильно. Это случаи, когда , или оказываются равны . Это привычная расплата в случае бирациональной эквивалентности, и она не должна вызывать никаких волнений.

Давайте рассмотрим пример.

На эллиптической кривой (2) есть хорошая рациональная точка:

, . Возможно, её не так просто найти, но очень просто проверить: просто вставьте эти значения и вы увидите, что две половины одинаковы (я выбирал эту точку не случайным образом, но пока это неважно). Можно просто проверить, какие значения , , она нам даёт. Мы получаем , , , и поскольку мы можем умножить на общий делитель, то результаты преобразуются в , , .

как можно с лёгкостью убедиться. Это простое решение нашего исходного уравнения в целых числах, но, увы, не в положительных целых. Это решение непросто вывести вручную, но и несложно получить без всей этой рассматриваемой здесь махины, приложив немного терпения. Самая сложность заключается в положительных решениях.

Теперь, получив рациональную точку на эллиптической кривой, например, на нашей кривой (2), можно начать генерировать другие с помощью техники хорд и касательных, рассмотренной в предыдущей статье на Quora.

Для начала прибавим нашу точку к ней самой, найдя касательную к кривой в точке и определив, где она снова встречается с кривой. Результат будет немного пугающим:

и снова эта новая точка соответствует значениям , , , являющимся решением исходного уравнения

Это решение определённо непросто найти вручную, но оно всё ещё под силу компьютеру. Однако оно по-прежнему неположительно.

Не пугаясь неудач, мы продолжаем вычислять , что можно определить соединением прямой линией и и нахождением третьей точки пересечения с кривой. И снова мы вычисляем , , , и снова результат неположителен. То же самое будет и с , и с , и так далее… пока мы не наткнёмся на .

Его определённо непросто найти, но с помощью нашей машинерии нам достаточно повторить девять раз простую геометрическую процедуру. Соответствующие значения , , потрясающи:

a=154476802108746166441951315019919837485664325669565431700026634898253202035277999,
b=36875131794129999827197811565225474825492979968971970996283137471637224634055579,
c=4373612677928697257861252602371390152816537558161613618621437993378423467772036

Это 80-разрядные числа! Вы никак не смогли бы найти 80-разрядные числа на компьютере с помощью простого перебора. Выглядит невероятным, но вставив эти огромные числа в простое выражение , мы действительно получим ровно .

Фактически, они являются наименьшими решениями задачи. Если мы продолжим прибавлять к самой себе точку , то при этом просто будут расти делители. Непросто это доказать, потому что всегда есть вероятность сокращения, но теория высот для эллиптической кривой позволяет нам показать, что эти астрономические числа на самом деле являются простейшим решением уравнения.

Вернёмся к теории. Эллиптическая кривая над рациональными значениями имеет ранг, который является количеством точек, необходимых, чтобы использовать для метод хорд и касательных и быть уверенным, что мы рано или поздно найдём все рациональные точки на кривой. Наша эллиптическая кривая (2) имеет ранг 1. Это значит, что у неё есть бесконечное количество рациональных точек, но все они получаются из единственной, которая является ничем иным, как нашей точкой . Алгоритмы вычисления ранга и нахождения такого генератора далеки от тривиальных, но SageMath (теперь имеющий название CoCalc) выполняет их меньше чем за секунду всего в нескольких строках кода. Мой код можно посмотреть здесь. Он воспроизводит всё решение с нуля, но, конечно же, использует встроенные методы Sage для работы с эллиптическими кривыми.

В нашем случае точка лежит на овальной части кривой, как и точки для любого положительного целого . Они «кружатся» по овалу и постепенно довольно равномерно по нему распределяются. Это очень удачно, потому что только небольшая часть этого овала даёт положительные решения в отношении , , : это выделенная жирным часть графика ниже, взятого из работы Бремнера и Маклауда.

Точки , , и так далее, не лежат на выделенной части, а — лежит, именно так мы и получили наши 80-разрядные положительные решения.

Бремнер и Маклауд изучили, что происходит, если мы заменяем чем-то другим. Если вы думаете, что решения будут большими, то подождите, пока не увидите, какими окажутся решения при результате . Вместо 80 разрядов нам понадобится 398 605 460 разрядов. Да, это только количество разрядов решения. Если заменить результат на , то решение будет содержать триллионы разрядов. Триллионы. Для этого невинно выглядящего уравнения:

Поразительный пример того, как диофантовы уравнения с небольшими коэффициентами могут иметь огромные решения. Это внушает не просто трепет, а ощущение бездонности. Отрицательное решение десятой проблемы Гильберта означает, что рост решений при увеличении коэффициентов — это невычислимая функция, потому что если бы она была вычисляемой, то у нас был бы простой алгоритм решения диофантовых уравнений, а его не существует (ни простого, ни сложного). Соответствие 80-разрядные числа, числа из сотен миллионов разрядов и триллионы разрядов даёт нам небольшое представление о первых, небольших шагах этой чудовищной невычислимой функции. Немного измените числа в уравнении, и решения запросто превзойдут всё, что может вместиться в нашу жалкую, крошечную Вселенную.

Вот такое удивительно хитрое небольшое уравнение.

Благодарю пользователя MrShoor, приславшего мне ссылку на эту интересную статью.

Метод подсчёта количества решений

Линейные алгебраические уравнения — одни из самых простых уравнений, которые мы можем решить. Если в уравнении только одна переменная, решение тривиально, в то время как для системы линейных уравнений существует множество способов найти уникальные решения.

В этой статье нас интересует частный случай линейного уравнения с несколькими переменными. Хорошо известно, что подобное уравнение имеет бесконечное число решений. Мы наложим определённые ограничения и в значительной степени сократим количество решений.

Общая форма интересующего нас уравнения:

где n и m — положительные целые числа.

Наша задача — найти число решений этого уравнения, предполагая, что xᵢ являются целыми числами. Это предположение значительно снижает число решений заданного уравнения.

Нам нужен метод

Давайте начнём с частного случая общего уравнения:

Нетрудно найти все решения этого уравнения методом простого счёта. Решения заданы парами (x₁, x₂):

Мы видим, что уравнение имеет шесть решений. Также нетрудно предположить, что, если мы заменим правую часть определённым положительным целым числом m, решения будут выглядеть так:

и мы сможем подсчитать число решений — m+1.

Это было просто, верно?

Теперь возьмём немного более сложный вариант с тремя переменными, скажем:

С несколько большими усилиями, чем в предыдущем примере, находим решения в виде наборов из трёх чисел (x₁, x₂, x₃):

Число решений в этом случае равно 10.

Легко представить, что метод прямого счёта может стать очень утомительным для уравнения с большим количеством переменных. Он также становится утомительным, если целое число в правой части уравнения становится больше — например, если в правой части у нас будет 8, а не 3, решений будет уже 45. Разумеется, не хотелось бы искать все эти решения методом прямого счёта.

Значит, нужен эффективный метод.

Разрабатываем метод

Существует ещё один способ, которым можно решить предыдущие два уравнения. Давайте снова начнём с этого уравнения:

Одним из решений было (5, 0). Давайте преобразуем его в:

Мы разложили решение на нули и единицы, соответствующие каждому числу. Ненулевую часть (в данном случае 5) мы разложили на соответствующее число единиц, а ноль преобразовали в ноль. Таким же образом мы можем разложить и другое решение:

Мы поменяли прежнее расположение нуля, чтобы получить новое решение. Итак, два числа в парах (обозначенные красным и голубым) разделены нулём (чёрный) в разложенном виде. Таким же образом запишем оставшиеся решения:

Записав решения таким образом, видим закономерность. Кажется, все решения — это просто перестановки нулей и единиц. Вопрос о том, сколько существует решений, становится эквивалентным вопросу как много таких перестановок нулей и единиц может быть сделано, начиная с любой из конфигураций.

В данном случае у нас есть 6 местоположений в разложенной конфигурации для размещения нулей и единиц. Мы можем выбрать простейшее решение в качестве начальной конфигурации:

Теперь всё, что нам нужно найти, это общее число способов, которыми можно заполнить шесть местоположений пятью единицами и одним нулём.

Подобные задачи подсчёта мы можем решить различными способами, но наиболее эффективным будет способ, разработанный в такой области математики как комбинаторика, которая даёт нам формулу для числа способов перестановки r объектов в n местоположений:

где n! (читается как “n факториал”) определяется как произведение всех целых чисел от 1 до n, т.е. n! = 1 × 2 × 3 × ⋅ ⋅ ⋅ × n. Мы также определяем 0! = 1.

Эта формула обычно записывается в компактной форме как:

Теперь, возвращаясь к задаче, мы можем использовать эту формулу для нахождения числа способов перестановки пяти единиц в шести местоположениях:

Это то же самое число, что мы получили методом прямого счёта!

Выглядит многообещающе, поэтому давайте проверим, сможем ли мы найти таким способом число решений второго линейного уравнения:

Некоторые решения можно записать в разложенном виде:

В этот раз нам нужно заполнить тремя единицами и двумя нулями пять местоположений. Используя формулу мы можем найти число способов расположения чисел:

И опять то же число, что мы получили методом прямого счёта. Мы можем также найти число решений для нерешённого случая, где в правой части уравнения 8 вместо 3. Одним из решений будет:

а нам нужно найти число способов разместить 8 единиц в 10 местоположениях, и это будет:

как и утверждалось выше.

Если мы уверены в том, что этот метод работает для всех случаев, нам нужна общая формула. Напомним, что общее уравнение имеет вид:

Простейшее решение этого уравнения:

Поскольку существует n переменных, количество нулей в этом решении равно n-1. Таким образом, разложение выглядит так:

В разложенной конфигурации видим m и n-1 нулей (как утверждалось выше).

Следовательно, общее число местоположений, которые нужно заполнить, равно (m+n-1). Единственное, что остаётся — найти число способов, которыми можно заполнить m+n-1 местоположений m единиц, что определяется по формуле:


источники:

http://habr.com/ru/post/335248/

http://nuancesprog.ru/p/8926/