Найдите все значения параметра при которых уравнение

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

Квадратные уравнения с параметром

Уравнение называется квадратным, если имеет вид \(ax^2+bx+c=0,\) где \(a,b,c\) — любые числа \((a≠0)\). При этом надо быть внимательным, если \(a=0\), то уравнение будет линейным, а не квадратным. Поэтому, первым делом при решении квадратного уравнения с параметром, рекомендую смотреть на коэффициент при \(x^2\) и рассматривать 2 случая: \(a=0\) (линейное уравнение); \(a≠0\) (квадратное уравнение). Квадратное уравнение часто решается при помощи дискриминанта или теоремы Виета.

Исследование квадратного многочлена

Чтобы решить квадратное уравнение с параметром, нужно понять, при каких значениях параметра существуют корни, и найти их, выразив через параметр. Обычно это делается просто через анализ дискриминанта. (см. пример 1) Но иногда в задачах с параметром просят найти такие значения параметра, при которых корни принадлежат определенному числовому промежутку. Например:

  • Найдите такие значения параметра, чтобы оба корня были меньше некоторого числа \(γ\): \(x_1≤x_2 0)\); ветки параболы направлены вниз \((a 0\). Значит, между корнями функция принимает отрицательные значения, а вне этого отрезка – положительные. Так как наше число \(γ\) должно по условию лежать вне отрезка \((x_1,x_2)\), то \(f(γ)>0\).
  • \(a 0\). Этим условием мы накладываем ограничение, что наши корни должны лежать слева или справа от числа \(γ\).

В итоге получаем:

если \(a*f(γ) 0\), то \(γ∉(x_1,x_2)\).

Нам осталось наложить условие, чтобы наши корни были слева от числа \(γ\). Здесь нужно просто сравнить положение вершины нашей параболы \(x_0\) относительно \(γ\). Заметим, что вершина лежит между точками \(x_1\) и \(x_2\). Если \(x_0 0, \\x_0

При каких значениях параметра a уравнение $$a(a+3) x^2+(2a+6)x-3a-9=0$$ имеет более одного корня?

1 случай: Если \(a(a+3)=0\), то уравнение будет линейным. При \(a=0\) исходное уравнение превращается в \(6x-9=0\), корень которого \(x=1,5\). Таким образом, при \(a=0\) уравнение имеет один корень.
При \(a=-3\) получаем \(0*x^2+0*x-0=0\), корнями этого уравнения являются любые рациональные числа. Уравнение имеет бесконечное количество корней.

2 случай: Если \(a≠0; a≠-3\), то получим квадратное уравнение. При положительном дискриминанте уравнение будет иметь более одного корня: $$D>0$$ $$D/4=(a+3)^2+3a(a+3)^2>0$$ $$(a+3)^2 (3a+1)>0$$ $$a>-\frac<1><3>.$$ С учетом \(a≠0;\) \(a≠-3\), получим, что уравнение имеет два корня при \(a∈(-\frac<1><3>;0)∪(0;+∞)\). Объединив оба случая получим (внимательно прочитайте, что от нас требуется):

Найти все значения параметра a, при которых корни уравнения $$(a+1) x^2-(a^2+2a)x-a-1=0$$ принадлежат отрезку \([-2;2]\).

1 случай: Если \(a=-1\), то \(0*x^2-x+1-1=0\) отсюда \(x=0\). Это решение принадлежит \([-2;2]\).

2 случай: При \(a≠-1\), получаем квадратное уравнение, с условием, что все корни принадлежат \([-2;2]\). Для решения введем функцию \(f(x)=(a+1) x^2-(a^2+2a)x-a-1\) и запишем систему, которая задает требуемые условия:

Подставляем полученные выражения в систему:

Решение задачи с параметрами.

Задача Профильного Уровня на параметры

Эта задача была на экзамене 2016 года в основной период ЕГЭ по математике. Многие ребята тогда писали, что задания по математике профильного уровня были чрезмерно сложными, и даже создали петицию на сайте OnlinePetition.ru

Ребята, прикол в том, что они были проще многих из тех образцов, по которым вы готовились. Просто непривычнее. Дело в том, что в последнее время на ЕГЭ давались задачи на параметры, которые лучше было решать графическим методом. А 6 июня 2016 года были задачи, в которых достаточно было проанализировать ОДЗ (Область Допустимых Значений) уравнения и его Дискриминант, так как после преобразований уравнение оказывалось квадратным (!).

Давайте рассмотрим решения двух примеров.

Найдите все значения параметра a, при каждом из которых уравнение

√15x 2 + 6ax + 9 ____________ = x 2 + ax + 3

имеет ровно три различных решения.

Решение.

Не забываем начать решение уравнения с анализа его области определения.
Область определения уравнения (системы уравнений, неравенства, функции) совпадает с Областью Допустимых Значений выражения, если условием задачи никаких специальных ограничений не накладывается. Здесь просто ОДЗ:
1) 15x 2 + 6ax + 9 ≥ 0 ;
2) x 2 + ax + 3 ≥ 0 .
Оба неравенства должны выполняться одновременно, т.е. фактически это система неравенств.
Первое условие означает, что подкоренное выражение для корней чётной степени обязано быть неотрицательным.
Второе условие связано с определением арифметического корня. Согласно этому определению результат вычисления квадратного корня есть неотрицательное число, поэтому правая часть равенства также должна быть неотрицательной.
Оба неравенства являются квадратными, но решать мы их будем позже. А пока, заручившись неотрицательностью обеих частей равенства, смело возводим обе части уравнения в квадрат, чтобы избавиться от знака радикала.

Сумма трёх членов возводится в квадрат по правилу — все три квадрата и все три удвоенных произведения, т.е.
(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ac.
Но если вы этого не знаете, не страшно. Скобки-то умеете и ставить, и раскрывать.
(a + (b + c)) 2 = a 2 + 2a(b + c) + (b + c) 2 и далее.

Любым способом после возведения в квадрат получим

Преобразуем: переносим все слагаемые в правую часть, приводим подобные члены, общий множитель выносим за скобки. Имеем:

Очевидно, что x = 0 будет корнем этого уравнения при любом значении параметра a. Проверим ОДЗ при x = 0.

1) 15·0 2 + 6a·0 + 9 ≥ 0; 9 ≥ 0 ;
2) 0 2 + a·0 + 3 ≥ 0; 3 ≥ 0.

Оба неравенства выполняются также при любом значении параметра a. Значит один корень уже есть и теперь нам осталось найти все значения параметра a, при каждом из которых квадратное уравнение

имеет ровно два различных решения, не совпадающих с x = 0 и удовлетворяющих неравенствам 1) и 2), т.е. первоначальному ОДЗ.
Исследуем дискриминант:

Таким образом, последнее уравнение при любом a имеет два разных корня, которые мы можем найти

Совпадение с первым (нулевым корнем) может быть при −a + 3 = 0; a = 3 и при −a − 3 = 0; a = −3 .

Замечание. Это уравнение проще и быстрее решать не через дискриминант, а выделением полного квадрата.
x 2 + 2ax + a 2 − 9 = 0; (x + a) 2 = 9; x + a = ±3.
Но на таком ответственном мероприятии, как выпускной экзамен, я советую решать двумя способами сразу — для взаимной проверки ответов.

Осталось сверить эти корни с Областью Допустимых Значений исходного уравнения.
Проверяем, подставляя поочередно оба корня в оба неравенства.

Итак, первому неравенству всегда удовлетворяют оба корня. Чтобы оба корня удовлетворяли второму неравенству, нужно чтобы параметр a удовлетворял системе условий , т.е. принадлежал промежутку [−4; 4].

Подводим итоги. Ограничение на параметр даёт только второе условие из ОДЗ: a ∈[−4; 4], а требование о несовпадении корней выполняется, если исключить из этого промежктка a = ±3.

Ответ: a ∈[−4;−3)∪(−3; 3)∪(3; 4]

Как видите, коэффициенты здесь подобраны так, что алгебраические операции не сложны и не занимают много времени. Но, если вы забыли об особенностях квадратных корней и упустили из виду именно условие 2) из ОДЗ, то решения не получите вообще.
Надеюсь, что многие выпускники всё-таки справились с этой задачей, и желаю им дальнейших успехов на экзаменах по выбору.

Найдите все значения а, при каждом из которых уравнение

имеет единственный корень.

Решение.

Начинаем, конечно, с ОДЗ: x ≠ −2 и xa .
Преобразуем:

Привели дроби к общему знаменателю и сразу отбросили знаменатель. Новое уравнение будет равносильно заданному только с учётом ограничений ОДЗ.

Почему можно так делать?
— Потому что дроби с равными знаменателями равны тогда, когда равны их числители.
Когда нельзя так делать?
— Когда не проверено неравенство знаменателя нулю или забыли предварительно записать ОДЗ.
Кому можно, а кому нельзя так делать?
— Аккуратным и вдумчивым ученикам можно, невнимательным нельзя. Последним надо переносить всё в левую часть равенства, упрощать выражение в виде полной дроби, затем переходить к совокупности условий: «дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю».

После раскрытия скобок и приведения подобных членов получим

окончательно приведём к виду, характерному для квадратного уравнения:

Дискриминант этого уравнения

Заданное в условии задачи уравнение может иметь единственное решение в двух случаях. Во-первых, когда дискриминант полученного квадратного уравнения равен нулю, а его единственный корень не совпадает с ограничениями ОДЗ. Иначе его нужно будет отбросить и решений не останется совсем. Во-вторых, когда квадратное уравнение имеет два разных корня (дискриминант больше нуля), но один и только один из них не удовлетворяет ОДЗ.

Случай I. D = 0.

−4a 2 − 4a + 9 = 0 при a = (−1 ± √10 __ )/2.

При этом корень уравнения x = (2a + 1)/2 = a + 0,5 . Очевидно, что при полученных значениях a он не совпадает ни с a, ни с −2.
Таким образом, получены два искомых значения параметра.

Случай II.

Определим те значения a, при которых корнем квадратного уравнения является x = а.

Определим те значения a, при которых корнем квадратного уравнения является x = −2.

При этих значениях параметра а можно продолжить исследование дискриминанта и второго корня квадратного уравнения. Но проще проверить их подстановкой в исходное уравнения условия задачи.

a = 1

x − 2·1 _______ x + 2 + x − 1 ____ x − 1 = 1; x − 2 _____ x + 2 + 1 = 1; x − 2 _____ x + 2 = 0; x = 2.

x − 2·(−1) _________ x + 2 + x − 1 _______ x − (−1) = 1; x + 2 ____ x + 2 + x − 1 ____ x + 1 = 1; 1 + x − 1 ____ x + 1 = 1; x − 1 ____ x + 1 = 0; x = 1.

x − 2·(−2) _________ x + 2 + x − 1 _______ x − (−2) = 1; x + 4 ____ x + 2 + x − 1 ____ x + 2 = 1; x + 4 + x − 1 = x + 2; x = −1.

Таким образом все три значения удовлетворяют условию задачи.

Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.


источники:

http://sigma-center.ru/quadratic_equation_parametr

http://mathematichka.ru/ege/C_problems/problem18_2016.html