Найти частные решения дифференциальных уравнений вариант 2

Дифференциальные уравнения (варианты)

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

, ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , .

Подставим в исходное , , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Из второго уравнения

Ответ:

Вариант 2

Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:

Посчитаем интегралы отдельно:

Тогда: или

Ответ:

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Данное уравнение не содержит у, следовательно понизить его порядок можно с помощью подстановки , тогда .

Отсюда — линейное дифференциальное уравнение. Приведём к виду: ,

Замена где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r3-3r2+4= 0

Корни характеристического уравнения:

R1 = -1 и корень характеристического уравнения r2 = 2 кратности 2.

Следовательно, фундаментальную систему решений составляют функции: y1 = e-x, y2 = e2x, y3 = xe2x

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = (2•x-3)•e-x

Уравнение имеет частное решение вида:

Y’ =

Y» =

Y»’ =

которые подставляем в исходное дифференциальное уравнение:

-3+4=

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Частное решение имеет вид:

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r3 — 16r = 0

Корни характеристического уравнения:r1 = -4, r2 = 0, r3 = 4

Следовательно, фундаментальную систему решений составляют функции:

Y1 = e-4x, y2 = e0x, y3 = e4x

Общее решение однородного уравнения имеет вид:

Правая часть F(x) = e2•x+3cos2x-sinx

Будем искать отдельно частные решения для F1(x) = e2•x, F2(x) = 3cos2x, F3(x) = — sinx

Рассмотрим правую часть: F1(x) = e2•x

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 1, Q(x) = 0, α = 2, β = 0.

Следовательно, число α + βi = 2 + 0i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида:

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (8•A•e2x) -16(2•A•e2x) = e2•x или -24•A•e2x = e2•x

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/24;

Частное решение имеет вид: y* = -1/24e2x

Рассмотрим правую часть: F2(x) = 3•cos(2•x)

Поиск частного решения.

Уравнение имеет частное решение вида:y* = Acos(2x) + Bsin(2x)

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (8•A•sin(2x)-8•B•cos(2x)) -16(2•B•cos(2x)-2•A•sin(2x)) = 3•cos(2•x)

или 40•A•sin(2x)-40•B•cos(2x) = 3•cos(2•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B =-3/40;

Частное решение имеет вид:

Поиск частного решения.

Уравнение имеет частное решение вида: y* = Acos(x) + Bsin(x)

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (A•sin(x)-B•cos(x)) -16(B•cos(x)-A•sin(x)) = — sin(x)

или 17•A•sin(x)-17•B•cos(x) = — sin(x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/17;B = 0;

Частное решение имеет вид: y* = -1/17cos(x) + 0sin(x) или y* = -1/17cos(x)

Окончательно, общее решение данного уравнения

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 -6 r + 8 = 0

Корни характеристического уравнения: r1 = 2, r2 = 4

Следовательно, фундаментальную систему решений составляют функции: y1 = e4x, y2 = e2x

Общее решение однородного уравнения имеет вид:

Для поиска частного решения воспользуемся методом вариации произвольных постоянных. Для этого решим систему:

Тогда окончательно

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 -4 r + 4 = 0

Корни характеристического уравнения:

Корень характеристического уравнения r1 = 2 кратности 2.

Следовательно, фундаментальную систему решений составляют функции: y1 = e2x, y2 = xe2x

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = e2•x•sin(5•x)

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 1, Q(x) = 0, α = 2, β = 5.

Следовательно, число α + βi = 2 + 5i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида: y* = e2x(Acos(5x) + Bsin(5x))

Которые подставляем в исходное дифференциальное уравнение:

Y» -4y’ + 4y = (-e2x((20•A+21•B)•sin(5x)+(21•A-20•B)•cos(5x))) -4(e2x((2•B-5•A)•sin(5x)+(2•A+5•B)•cos(5x))) + 4(e2x(Acos(5x) + Bsin(5x))) = e2•x•sin(5•x)

или -25•A•e2x•cos(5x)-25•B•e2x•sin(5x) = e2•x•sin(5•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B = -1/25;

Частное решение имеет вид: y* = e2x(0cos(5x) -1/25sin(5x)) илиy* =-1/25 e2x sin(5x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Используем начальные условия

Тогда окончательно,

Характеристическое уравнение исходного дифференциального уравнения имеет мнимые корни . Следовательно, общее решение дифференциального уравнения . Тогда . Подставляем в первое граничное условие

. Тогда .

Подставляем во второе граничное условие

При А=0 и В=0 – тривиальное решение у=0

Поэтому и — собственные значения

— собственные векторы

Метод исключения неизвестных.

Продифференцируем по х первое уравнение

Исключая с помощью второго уравнения , получим ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное ,

Тогда частное решение

Общее решение неоднородного примет вид:

Из первого уравнения

Ответ:

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения , получим

, ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Из второго уравнения

Ответ:

Вариант 5

Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:

Посчитаем интегралы отдельно:

Тогда: или

Ответ:

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Данное уравнение не содержит у, следовательно понизить его порядок можно с помощью подстановки , тогда .

Отсюда — линейное дифференциальное уравнение. Приведём к виду: ,

Замена где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид

.

Частное решение неоднородного уравнения будем искать в виде , тогда , . , , .

Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 — r= 0

Вынесем r за скобку. Получим: r(r-1) = 0

Корни характеристического уравнения:r1 = 0, r2 = 1

Следовательно, фундаментальную систему решений составляют функции: y1 = e0x, y2 = ex.

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) =

Уравнение имеет частное решение вида:

которые подставляем в исходное дифференциальное уравнение:

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Частное решение имеет вид:

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:

Корни характеристического уравнения:(комплексные корни): r1 = 4i, r2 = -4i

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = 16•cos(4•x)-16•e4x, будем искать отдельно частные решения для f1(x)= 16•cos(4•x) и для f2(x)= 16•e4x

Для f1(x) = 16•cos(4•x) имеем

Уравнение имеет частное решение вида: y ч1* = x (Acos(4x) + Bsin(4x))

Которые подставляем в исходное дифференциальное уравнение:

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B = 2;

Частное решение имеет вид: yч1* = x (0cos(4x) + 2sin(4x)) или y ч1* = 2xsin(4x)

Частное решение ищем в виде y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 16, Q(x) = 0, α = 4, β = 0.

Следовательно, число α + βi = 4 + 0i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида:

Которые подставляем в исходное дифференциальное уравнение:

Y» + 16y = (16•A•e4x) + 16(Ae4x) = 16•e4•x или 32•A•e4x = 16•e4•x

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 1/2;

Частное решение имеет вид: y*ч2 = 1/2e4x

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 + 9 = 0

Корни характеристического уравнения: r1 = -3i, r2 = 3i

Общее решение однородного уравнения имеет вид:

Для поиска частного решения воспользуемся методом вариации произвольных постоянных. Для этого решим систему:

Тогда окончательно

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 + 1 = 0

Корни характеристического уравнения:(комплексные корни): r1 = i,

Следовательно, фундаментальную систему решений составляют функции:

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = 2•cos(3•x)-3•sin(3•x)

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 2, Q(x) = -3, α = 0, β = 3.

Следовательно, число α + βi = 0 + 3i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида: y* = Acos(3x) + Bsin(3x)

Которые подставляем в исходное дифференциальное уравнение:

Y» + y = (-9(A•cos(3x)+B•sin(3x))) + (Acos(3x) + Bsin(3x)) = 2•cos(3•x)-3•sin(3•x)

или -8•A•cos(3x)-8•B•sin(3x) = 2•cos(3•x)-3•sin(3•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/4;B = 3/8;

Частное решение имеет вид: y* = -1/4cos(3x) + 3/8sin(3x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Используем начальные условия

Тогда окончательно,

Характеристическое уравнение исходного дифференциального уравнения имеет мнимые корни . Следовательно, общее решение дифференциального уравнения . Подставляем в первое граничное условие

. Тогда .

Подставляем во второе граничное условие

При А=0 и В=0 – тривиальное решение у=0

Поэтому и — собственные значения

— собственные векторы

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

,

Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Характеристическое уравнение имеет корни . Следовательно, общее решение для будет .

Из второго уравнения

Ответ:

Найдём сначала общее решение соответствующей однородной системы

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

,

Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Характеристическое уравнение имеет корни . Следовательно, общее решение для будет .

Из второго уравнения Общее решение однородной системы:

Принимаем частное решение первоначальной системы в виде:

Решаем данную систему по формулам Крамера, получим два дифференциальных уравнения первого порядка:

Окончательно,

Или

Ответ:

Примеры решения дифференциальных уравнений с ответами

Простое объяснение принципов решения дифференциальных уравнений и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения дифференциальных уравнений

Дифференциальные уравнения не так сильно отличаются от привычных уравнений, где необходимо найти переменную x , как кажется на первый взгляд. Всё различие лишь в том, что в дифференциальных уравнениях мы ищем не переменную, а функцию у(х) , с помощью которой можно обратить уравнение в равенство.

Дифференциальное уравнение – это уравнение, содержащее саму функцию (y=y(x)), производные функции или дифференциалы (y′, y″) и независимые переменные (наиболее распространённая – х). Обыкновенным дифференциальным уравнением называют уравнение, в котором содержится неизвестная функция под знаком производной или под знаком дифференциала.

Чтобы решить ДУ, необходимо найти множество всех функций, которые удовлетворяют данному уравнению. Это множество в большинстве случаев выглядит следующим образом:y=f(x; С), где С – произвольная постоянная.

Проверить решённое ДУ можно, подставив найденную функцию в изначальное уравнение и убедившись, что уравнение обращается в тождество (равенство).

Примеры решения дифференциальных уравнений

Задание

Решить дифференциальное уравнение xy’=y.

Решение

В первую очередь, необходимо переписать уравнение в другой вид. Пользуясь

переписываем дифференциальное уравнение, получаем

Дальше смотрим, насколько реально разделить переменные, то есть путем обычных манипуляций (перенос слагаемых из части в часть, вынесение за скобки и пр.) получить выражение, где «иксы» с одной стороны, а «игреки» с другой. В данном уравнении разделить переменные вполне реально, и после переноса множителей по правилу пропорции получаем

Далее интегрируем полученное уравнение:

В данном случае интегралы берём из таблицы:

После того, как взяты интегралы, дифференциальное уравнение считается решённым. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения.

– это общий интеграл. Также для удобства и красоты, его можно переписать в другом виде: y=Cx, где С=Const

Ответ

Задание

Найти частное решение дифференциального уравнения

Решение

Действуем по тому же алгоритму, что и в предыдущем решении.

Переписываем производную в нужном виде, разделяем переменные и интегрируем полученное уравнение:

Получили общий интеграл.Далее, воспользуемся свойством степеней, выразим у в «общем» виде и перепишем функцию:

Если – это константа, то

0\]» title=»Rendered by QuickLaTeX.com» />

– тоже некоторая константа, заменим её буквой С:

– убираем модуль и теперь константа может принимать и положительные, и отрицательные значения.

Получаем общее решение:

Ответ

Задание

Решить дифференциальное уравнение

Решение

В первую очередь необходимо переписать производную в необходимом виде:

Второй шаг – разделение переменных и перенос со сменой знака второго слагаемого в правую часть:

После разделения переменных, интегрируем уравнение, как в примерах выше.

Чтобы решить интегралы из левой части, применим метод подведения функции под знак дифференциала:

В ответе мы получили одни логарифмы и константу, их тоже определяем под логарифм.

Далее упрощаем общий интеграл:

Приводим полученный общий интеграл к виду: F(x,y)=C:

Чтобы ответ смотрелся красивее, обе части необходимо возвести в квадрат.

Ответ

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(0)=ln2.

Решение

Первый шаг – нахождение общего решения. То, что в исходном уравнении уже находятся готовые дифференциалы dy и dx значительно упрощает нам решение.

Начинаем разделять переменные и интегрировать уравнение:

Мы получили общий интеграл и следующий шаг – выразить общее решение. Для этого необходимо прологарифмировать обе части. Знак модуля не ставим, т.к. обе части уравнения положительные.

Получаем общее решение:

Далее необходимо найти частное решение, которое соответствует заданному начальному условию y(0)=ln2.

В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Задание

Решить дифференциальное уравнение

Решение

При внимательном разборе данного уравнения видно, что можно разделить переменные, что и делаем, после интегрируем:

В данном случае константу C считается не обязательным определять под логарифм.

Ответ

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(1)=e. Выполнить проверку.

Решение

Как и в предыдущих примерах первым шагом будет нахождение общего решения. Для этого начинаем разделять переменные:

Общий интеграл получен, осталось упростить его. Упаковываем логарифмы и избавляемся от них:

можно выразить функцию в явном виде.

Осталось найти частное решение, удовлетворяющее начальному условию y(1)=e.

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Проверка

Необходимо проверить, выполняется ли начальное условие:

Из равенства выше видно, что начальное условие y(1)=e выполнено.

Далее проводим следующую проверку: удовлетворяет ли вообще частное решение

дифференциальному уравнению. Для этого находим производную:

Подставим полученное частное решение

и найденную производную в исходное уравнение

Получено верное равенство, значит, решение найдено правильно.

Задание

Найти общий интеграл уравнения

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Ответ

Задание

Найти частное решение ДУ.

Решение

Данное ДУ допускает разделение переменных. Разделяем переменные:

Найдем частное решение (частный интеграл), соответствующий заданному начальному условию

Подставляем в общее решение

Ответ

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Левую часть интегрируем по частям:

В интеграле правой части проведем замену:

(здесь дробь раскладывается методом неопределенных коэффициентов)

Ответ

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных.

Разделяем переменные и интегрируем:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Практическая работа по математике на тему: «Дифференциальные уравнения»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Практическая работа № 5.

Тема : Решение дифференциальных уравнений I -го и II -го порядка .

Цель : Проверить на практике знание понятия дифференциального уравнения, виды дифференциальных уравнений, умение решать дифференциальные уравнения I и II –го порядков, находить общее и частное решение.
Обеспечение практической работы :
Теоретический материал методической рекомендации к практической работе.

Практические задания по вариантам.

Теоретический материал и примеры решения дифференциальных уравнений.

1. Дифференциальное уравнение первого порядка, содержит:
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

Решить дифференциальное уравнение – это значит, найти множество функций , которые удовлетворяют данному уравнению. Такое множество функций называется общим решением дифференциального уравнения.

Решить дифференциальное уравнение

.

В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения. Интегрируем обе части:

Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть, – это общий интеграл.

Вместо записи обычно пишут .

В данном случае:

Функция представлена в явном виде. Это и есть общее решение.

Множество функций является общим решением дифференциального уравнения .

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения.

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

По условию требуется найти частное решение ДУ, удовлетворяющее начальному условию. Такая постановка вопроса также называется задачей Коши.

Сначала находим общее решение.

Интегрируем уравнение:

Итак, общее решение: . На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию .

Необходимо подобрать такое значение константы , чтобы выполнялось заданное начальное условие .

В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:

В общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Решить дифференциальное уравнение

Решение: Переписываем производную в нужном нам виде:

Переносим второе слагаемое в правую часть со сменой знака:

Переменные разделены, интегрируем обе части:



Решение распишу очень подробно:


Ответ: общий интеграл:

Примечание: общий интеграл любого уравнения можно записать не единственным способом. Таким образом, если у вас не совпал результат с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: Сначала найдем общее решение. Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интегрируем уравнение:


общее решение:

Найдем частное решение, соответствующее заданному начальному условию

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

2.Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение.

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:

, где и – константы (числа), а в правой части – строго ноль.

Неоднородное ДУ второго порядка с постоянными коэффициентами и меет вид:
, где и – константы, а – функция, зависящая только от «икс» . В простейшем случае функция может быть числом, отличным от нуля .

Какая мысль приходит в голову после беглого взгляда? Неоднородное уравнение кажется сложнее. На этот раз первое впечатление не подводит!

Кроме того, чтобы научиться решать неоднородные уравнения необходимо уметь решать однородные уравнения. По этой причине сначала рассмотрим алгоритм решения линейного однородного уравнения второго порядка:

Для того чтобы решить данное ДУ, нужно составить так называемое характеристическое уравнение:

По какому принципу составлено характеристическое уравнение, отчётливо видно:
вместо второй производной записываем ;
вместо первой производной записываем просто «лямбду»;
вместо функции ничего не записываем.

– это обычное квадратное уравнение, которое предстоит решить.

Существуют три варианта развития событий.
Они доказаны в курсе математического анализа, и на практике мы будет использовать готовые формулы.

Характеристическое уравнение имеет два различных действительных корня

Если характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так:
, где – константы.

В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение:

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

,

Ответ: общее решение:

Характеристическое уравнение имеет два кратных действительных корня

Если характеристическое уравнение имеет два кратных (совпавших) действительных корня (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Вместо в формуле можно было нарисовать , корни всё равно одинаковы.

Если оба корня равны нулю , то общее решение опять же упрощается: . Кстати, является общим решением того самого примитивного уравнения , о котором я упоминал в начале урока. Почему? Составим характеристическое уравнение: – действительно, данное уравнение как раз и имеет совпавшие нулевые корни .

Решить дифференциальное уравнение

Решение: составим и решим характеристическое уравнение:

Здесь можно вычислить дискриминант, получить ноль и найти кратные корни. Но можно невозбранно применить известную школьную формулу сокращенного умножения:

Получены два кратных действительных корня

Ответ: общее решение:

Характеристическое уравнение имеет сопряженные комплексные корни

Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:

Если получаются чисто мнимые сопряженные комплексные корни: , то общее решение упрощается:

Решить однородное дифференциальное уравнение второго порядка

Решение: Составим и решим характеристическое уравнение:


– получены сопряженные комплексные корни

Ответ: общее решение:

Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям ,

Решение: составим и решим характеристическое уравнение:

,
Получены два различных действительных корня, поэтому общее решение:

Алгоритм нахождения частного решения следующий:

Сначала используем начальное условие :

Согласно начальному условию, получаем первое уравнение: или просто

Далее берём наше общее решение и находим производную:

Используем второе начальное условие :

Согласно второму начальному условию, получаем второе уравнение: или просто

Составим и решим систему из двух найденных уравнений:

Подставим найденные значения констант в общее решение :

Ответ: частное решение:

1. Найти общее решение дифференциального уравнения к разделяющимися переменными.

2. Найти частное решение дифференциального уравнения с разделяющимися переменными.

3.Найти решение однородного дифференциального уравнения первого порядка.

4. Найти общее решение дифференциального уравнения 2-го порядка.

5. Найти частное решение дифференциального уравнения 2-го порядка.

1. Найти общее решение дифференциального уравнения c разделяющимися переменными.

2. Найти частное решение дифференциального уравнения с разделяющимися переменными.

3.Найти решение однородного дифференциального уравнения первого порядка.

4. Найти общее решение дифференциального уравнения 2-го порядка.

5. Найти частное решение дифференциального уравнения 2-го порядка.

1. Найти общее решение дифференциального уравнения c разделяющимися переменными.

2. Найти частное решение дифференциального уравнения с разделяющимися переменными.

3.Найти решение однородного дифференциального уравнения первого порядка.

4. Найти общее решение дифференциального уравнения 2-го порядка.

5. Найти частное решение дифференциального уравнения 2-го порядка.

1. Найти общее решение дифференциального уравнения c разделяющимися переменными.

2. Найти частное решение дифференциального уравнения с разделяющимися переменными.

3.Найти решение однородного дифференциального уравнения первого порядка.

4. Найти общее решение дифференциального уравнения 2-го порядка.

5. Найти частное решение дифференциального уравнения 2-го порядка.

1. Найти общее решение дифференциального уравнения к разделяющимися переменными.

2. Найти частное решение дифференциального уравнения с разделяющимися переменными.

3.Найти решение однородного дифференциального уравнения первого порядка.

4. Найти общее решение дифференциального уравнения 2-го порядка.

5. Найти частное решение дифференциального уравнения 2-го порядка.

1. Найти общее решение дифференциального уравнения к разделяющимися переменными.

2. Найти частное решение дифференциального уравнения с разделяющимися переменными.

3.Найти решение однородного дифференциального уравнения первого порядка.

4. Найти общее решение дифференциального уравнения 2-го порядка.

5. Найти частное решение дифференциального уравнения 2-го порядка.

Критерии оценки практической работы обучающихся

Оценка «5» ставится, если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

Оценка «4» ставится, если:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

Оценка «3» ставится, если:

допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.

Оценка «2» ставится, если:

допущены существенные ошибки, показавшие, что учащийся не владеет

обязательными умениями по данной теме в полной мере

Оценка «1» ставится, если:

работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.


источники:

http://nauchniestati.ru/spravka/primery-resheniya-differenczialnyh-uravnenij-s-otvetami/

http://infourok.ru/prakticheskaya_rabota_po_matematike_na_temu_differencialnye_uravneniya-533467.htm