Найти экстремальные значения функции неявно заданной уравнением

Примеры решений задач: функции нескольких переменных

В этом разделе вы найдете готовые задания разного типа для функций нескольких переменных:

Примеры: область определения ФНП

Задача 1. Найти область определения функции двух переменных $z=f(x,y)$. Изобразить ее на координатной плоскости и заштриховать.

Задача 2. Для данной функции найти область определения и изобразить ее на рисунке в системе координат.

Примеры: частные производные ФНП

Задача 3. Найти частные производные: $z=tg^3 (3x-4y)$

Задача 4. Найти частные производные второго порядка $z=\sqrt$

Задача 5. Найти частные производные сложной функции:

$$ z=u^2 \cdot \ln v; \quad u=\frac, \, v=x^2+y^2.$$

Задача 6. Проверить справедливость теоремы о смешанных производных второго порядка.

Задача 7. Найти полный дифференциал данной функции

Задача 8. Найти дифференциал второго порядка функции:

Задача 9. Для функции $z(x,y)$ двух переменных, неявно заданной уравнением $\sin(xz)+\cos(yz)=1$, найдите первый и второй дифференциалы в точке $x=y=1, z=0$.

Задача 10. Проверить, удовлетворяет ли функция двух переменных $z(x,y)$ указанному дифференциальному уравнению.

Градиент, производная по направлению

Задача 11. Найти производную функции $f(x,y,z)$ в точке $M(x_0,y_0,z_0)$ по направлению вектора $\overline$. Вычислить наибольшую скорость изменения функции в данной точке.

Задача 13. Найдите градиент, производную по направлению $\overline$ и матрицу Гессе в точке $M$ заданной функции, где $u=f(x,y,z)=x^2z+z^2x^2+y^3$, $\overline=\<2;1;-2\>$, $M(1,3,1)$.

Задача 14. Найти производную функции $u$ в точке $M$ по направлению нормали к поверхности $S$, образующей острый угол с положительным направлением оси $Oz$.

Касательная плоскость и нормаль

Задача 15. Составить уравнения касательной плоскости и нормали к поверхности $x^2+y^2-x+2y+4z-13=0$ в точке $M(2,1,2)$.

Задача 16. Для кривой $\overline=\overline(t)$ найти в точке $t_0$ уравнение касательной, уравнение нормальной плоскости и вычислить кривизну линии.

$$ \overline(t)=(t^2-3)\overline + (t^3+2)\overline+\ln t \overline, \quad t_0=1 $$

Задача 17. Найти градиент, первый дифференциал, матрицу вторых производных, второй дифференциал функции $z=2xy-xy^4+5y^3-3$ в точке $A(2,-3)$. Составить уравнения касательной плоскости и соприкасающегося параболоида к графику данной функции.

Экстремумы функции нескольких переменных

Задача 18. Найти точки экстремума функции $z=x^2+xy+y^2+2x-y$.

Задача 19. Найти точки локального экстремума и экстремальные значения $z=x^2+y^2-xy+x+y$.

Задача 20. Исследовать на экстремум функцию $z=x^4+xy+\frac<1><2>y^2+5$.

Задача 21. Определите, при каких значениях параметра $a$ функция $z(x,y)=x^3+y^3+4xy-7x-7y+a(x-1)^2+a(y-1)^2$ в точке (1;1):
А) имеет максимум,
Б) имеет минимум,
В) не имеет экстремума.

Задача 22. Найдите (локальные) экстремумы функции трех переменных $f(x,y,z)=2x^2-xy+2xz-y+y^3+z^2$.

Приближенные вычисления

Задача 23. Вычислить приближенно значение функции $Z=Z(x,y)$ и данной точке с помощью дифференциала.

Задача 24. Дана функция $z=x^2+2xy+3y^2$ и две точки $А (2; 1)$ и $В (1,96; 1,04)$. Требуется:
1) вычислить точное значение функции в точке $В$;
2) вычислить приближённое значение функции в точке $В$, исходя из значения функции в точке $А$ и заменив приращение функции при переходе от точки $А$ к точке $B$ дифференциалом;
3) оценить в процентах относительную погрешность, получающуюся при замене приращения функции её дифференциалом.

Ряд Тэйлора

Задача 25. Разложите функцию $f(x,y)=x^2\ln y + y^2$ по формуле Тейлора (с остаточным членом в форме Пеано) в окрестности точки $M(2;1)$ до членов второго порядка включительно. Выпишите первый и второй дифференциалы заданной функции.

Задача 26. Найти первые и вторые частные производные функции $F$ и записать формулу Тэйлора в указанной точке $x^0$.

Наибольшее и наименьшее значение в области

Задача 27. Найти наименьшее $m$ и наибольшее $M$ значения функции $z=f(x,y)=3-2x^2-xy-y^2$ в замкнутой области $D$, заданной системой неравенств $-1 \le x \le 1; 0\le y \le 2$. Сделать чертёж области $D$.

Задача 28. Экстремумы функций нескольких переменных. Требуется найти наибольшее и наименьшее значения функции $z=5x^2-3xy+y^2+4$ в области, ограниченной заданными линиями $x=0, y=0, x+y=2$.

Решение контрольной

Контрольное задание. Дана функция $f(x,y)=x^2+y^2-3xy$
1. Исследовать функцию $f$ на экстремум. Найти экстремальные значения функции.
2. Найти наибольшее и наименьшее значения функции $f$ в заданной области $D$.
3. Составить уравнение касательной плоскости к поверхности $z=f(x,y)$ в точке, где $x=x_0=1$, $y=y)0=3$.
4. Найти величину наибольшей скорости возрастания функции $f$ в точке $M_1(-1;1)$.
5. Вычислить производную функции $f$ в точке $M_1$ в направлении вектора $\overline$. Каков характер изменения функции? Почему?
6. Найти угол между градиентами функции $f$ в точках $M_1$ и $M_2(2;2)$. Построить векторы и указать угол.

Помощь с решением заданий

Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Найти экстремальные значения функции неявно заданной уравнением

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Экстремум функции двух переменных. Примеры исследования функций на экстремум.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ – точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y) f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином – точки экстремума.

Если $(x_0,y_0)$ – точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином – экстремумы функции.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $\frac<\partial z><\partial x>$ и $\frac<\partial z><\partial y>$. Составить и решить систему уравнений $ \left \ < \begin& \frac<\partial z><\partial x>=0;\\ & \frac<\partial z><\partial y>=0. \end \right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $\frac<\partial^2z><\partial x^2>$, $\frac<\partial^2z><\partial x\partial y>$, $\frac<\partial^2z><\partial y^2>$ и вычислить значение $\Delta=\frac<\partial^2z><\partial x^2>\cdot \frac<\partial^2z><\partial y^2>-\left(\frac<\partial^2z><\partial x\partial y>\right)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $\Delta > 0$ и $\frac<\partial^2z><\partial x^2>> 0$ (или $\frac<\partial^2z><\partial y^2>> 0$), то в исследуемая точка есть точкой минимума.
    2. Если $\Delta > 0$ и $\frac<\partial^2z><\partial x^2>0$, то $\frac<\partial^2z><\partial x^2>\cdot \frac<\partial^2z><\partial y^2>-\left(\frac<\partial^2z><\partial x\partial y>\right)^2 > 0$. А отсюда следует, что $\frac<\partial^2z><\partial x^2>\cdot \frac<\partial^2z><\partial y^2>> \left(\frac<\partial^2z><\partial x\partial y>\right)^2 ≥ 0$. Т.е. $\frac<\partial^2z><\partial x^2>\cdot \frac<\partial^2z><\partial y^2>> 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $\frac<\partial^2z><\partial x^2>> 0$, то и $\frac<\partial^2z><\partial y^2>> 0$. Короче говоря, если $\Delta > 0$ то знаки $\frac<\partial^2z><\partial x^2>$ и $\frac<\partial^2z><\partial y^2>$ совпадают.

    Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

    Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

    Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

    Мы получили систему линейных алгебраических уравнений. Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

    Значения $x=2$, $y=-3$ – это координаты стационарной точки $(2;-3)$. Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Вычислим значение $\Delta$:

    Так как $\Delta > 0$ и $\frac<\partial^2 z> <\partial x^2>> 0$, то согласно алгоритму точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

    $$ z_<\min>=z(2;-3)=4\cdot 2^2-6\cdot 2 \cdot (-3)-34\cdot 2+5\cdot (-3)^2+42\cdot (-3)+7=-90. $$

    Ответ: $(2;-3)$ – точка минимума; $z_<\min>=-90$.

    Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

    Будем следовать указанному выше алгоритму. Для начала найдём частные производные первого порядка:

    Сократим первое уравнение на 3, а второе – на 6.

    Если $x=0$, то второе уравнение приведёт нас к противоречию: $0\cdot y-2=0$, $-2=0$. Отсюда вывод: $x\neq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=\frac<2>$. Подставляя $y=\frac<2>$ в первое уравнение, будем иметь:

    Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

    Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=\frac<2>$, получим:

    Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

    Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем:

    Так как $\Delta(M_1) 0$ и $\left.\frac<\partial^2 z><\partial x^2>\right|_ > 0$, то согласно алгоритму $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

    $$ z_<\min>=z(2;1)=2^3+3\cdot 2\cdot 1^2-15\cdot 2-12\cdot 1+1=-27. $$

    Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

    Так как $\Delta(M_4) > 0$ и $\left.\frac<\partial^2 z><\partial x^2>\right|_ 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $\Delta$. Правда, для типовых расчётов это замечание бесполезно, – там требуют довести вычисления до числа 🙂

    Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

    Будем следовать алгоритму. Для начала найдём частные производные первого порядка:

    Сократим оба уравнения на $4$:

    Добавим к второму уравнению первое и выразим $y$ через $x$:

    Подставляя $y=-x$ в первое уравнение системы, будем иметь:

    Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-\sqrt<2>$ или $x=\sqrt<2>$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-\sqrt<2>$, $x_3=\sqrt<2>$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=\sqrt<2>$, $y_3=-x_3=-\sqrt<2>$.

    Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-\sqrt<2>,\sqrt<2>)$, $M_3(\sqrt<2>,-\sqrt<2>)$.

    Теперь приступим ко второму шагу алгоритма. Найдём частные производные второго порядка:

    Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем:

    $$\Delta(M_1)=16\cdot((3\cdot 0^2-1)(3\cdot 0^2-1)-1)=16\cdot 0=0.$$

    Так как $\Delta(M_1) = 0$, то согласно алгоритму требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

    Исследуем точку $M_2(-\sqrt<2>,\sqrt<2>)$. В этой точке получим:

    Так как $\Delta(M_2) > 0$ и $\left.\frac<\partial^2 z><\partial x^2>\right|_ > 0$, то согласно алгоритму $M_2(-\sqrt<2>,\sqrt<2>)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

    Аналогично предыдущему пункту исследуем точку $M_3(\sqrt<2>,-\sqrt<2>)$. В этой точке получим:

    Так как $\Delta(M_3) > 0$ и $\left.\frac<\partial^2 z><\partial x^2>\right|_ > 0$, то согласно алгоритму $M_3(\sqrt<2>,-\sqrt<2>)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

    Настал черёд вернуться к точке $M_1(0;0)$, в которой $\Delta(M_1) = 0$. Согласно алгоритму требуется дополнительное исследование. Под этой уклончивой фразой подразумевается «делайте, что хотите» :). Общего способа разрешения таких ситуаций нет, – и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $\Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ – точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) 3$? Тогда в точке $M_1$ точно не будет максимума.

    Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

    $$ z(x,x)=x^4+x^4-2x^2+4x\cdot x-2\cdot x^2+3=2x^4+3. $$

    Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

    Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

    Ответ: $(-\sqrt<2>,\sqrt<2>)$, $(\sqrt<2>,-\sqrt<2>)$ – точки минимума функции $z$. В обеих точках $z_<\min>=-5$.

    Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).


    источники:

    http://yukhym.com/ru/issledovanie-funktsii/issledovanie-funktsii-z-x-y-na-ekstremum.html

    http://math1.ru/education/funct_sev_var/extr2.html