Найти интегрирующий множитель уравнения онлайн

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Решение дифференциальных уравнений онлайн

Дифференциальным уравнением называется уравнение которое связывает неизвестную функцию и её производные различных порядков:

F ( x , y ‘ , y » , . , y ( n ) ) = 0

Порядком дифференциального уравнения называется порядок его старшей производной. Решить дифференциальное уравнение, значит найти неизвестную функцию , которая обращает это уравнение в верное тождество. Этого можно достичь, изучив теоретический материал по дифференциальным уравнениям, или воспользовавшись нашим онлайн калькулятором.

Наш калькулятор может находить как общее решение дифференциального уравнения, так и частное. Для поиска частного решения, необходимо ввести начальные условия в калькулятор. Для поиска общего решения, поле ввода начальных условий необходимо оставить пустым.

Уравнения в полных дифференциалах. Интегрирующий множитель

Дифференциальное уравнение первого порядка вида

называется уравнением в полных дифференциалах , если его левая часть представляет полный дифференциал некоторой функции , т.е.

Теорема. Для того, чтобы уравнение (1) являлось уравнением в полных дифференциалах, необходимо и достаточно, чтобы в некоторой односвязной области изменения переменных и выполнялось условие

Общий интеграл уравнения (1) имеет вид или

Пример 1. Решить дифференциальное уравнение .

Решение. Проверим, что данное уравнение является уравнением в полных дифференциалах:

так что т.е. условие (2) выполнено. Таким образом, данное уравнение есть уравнение в полных дифференциалах и

поэтому , где пока неопределенная функция.

Интегрируя, получаем . Частная производная найденной функции должна равняться , что дает откуда так что Таким образом, .

Общий интеграл исходного дифференциального уравнения .

При интегрировании некоторых дифференциальных уравнений можно так сгруппировать члены, что получаются легко интегрируемые комбинации.

Пример 2. Решить дифференциальное уравнение .

Решение. Здесь , так что условие (2) выполнено и, следовательно, данное уравнение есть уравнение в полных дифференциалах. Это уравнение легко привести к виду непосредственной группировкой его членов. С этой целью перепишем его так:

Поэтому изначальное уравнение можно записать в виде

Следовательно, есть общий интеграл исходного уравнения.

Интегрирующий множитель

В некоторых случаях, когда уравнение (1) не является уравнением в полных дифференциалах, удается подобрать функцию , после умножения на которую левая часть (1) превращается в полный дифференциал

Такая функция называется интегрирующим множителем . Из определения интегрирующего множителя имеем

Мы получили для нахождения интегрирующего множителя уравнение в частных производных.

Отметим некоторые частные случаи, когда удается сравнительно легко найти решение уравнения (5), т.е. найти интегрирующий множитель.

1. Если , то и уравнение (5) примет вид

Для существования интегрирующего множителя, не зависящего от , необходимо и достаточно, чтобы правая часть (6) была функцией только . В таком случае найдется квадратурой.

Пример 3. Решить уравнение .

Решение. Здесь . Имеем

Уравнение есть уравнение в полных дифференциалах. Его левую часть можно представить в виде

2. Аналогично, если есть функция только , то уравнение (1) имеет интегрирующий множитель , зависящий только от .

Пример 4. Решить уравнение .

Решение. Здесь . Имеем

Уравнение является уравнением в полных дифференциалах. Его можно записать в виде

Пример 5. Решить уравнение , если его интегрирующий множитель имеет вид .

Решение. Положим , тогда , и, следовательно,

Уравнение (5) для нахождения интегрирующего множителя будет иметь вид

и, значит, , откуда , т.е. . Умножая данное уравнение на , получим

Это есть уравнение в полных дифференциалах и его общий интеграл согласно (3) будет

После несложных преобразований будем иметь .


источники:

http://mathforyou.net/online/calculus/ode/

http://mathhelpplanet.com/static.php?p=uravneniya-v-polnyh-differentsialah