Найти канонические уравнения проекции прямой на плоскость

Задача 31787 Найти проекцию прямой (x–2)/5 = (y–3)/1.

Условие

Найти проекцию прямой (x–2)/5 = (y–3)/1 = (z+1)/2 на плоскость x+4y–3z+7=0

Решение

Точка (2;3;-1) принадлежит данной прямой.
Составим уравнение прямой || нормальному вектору плоскости
vector=(1;4;-3)

Найдем координаты точки K — точки пересечения этой прямой и плоскости
Решаем систему:
<(x-2)/1=(y-3)/4=(z-1)/(-3)

Обозначим отношение
(x-2)/1=(y-3)/4=(z-1)/(-3) = λ ⇒
получим параметрические уравнения прямой
x= λ +2
y= 4λ +3
z=-3 λ +1

подставим в уравнение плоскости

Найдем координаты точки В — точки пересечения данной прямой и данной плоскости.

Обозначим отношение
(x-2)/5=(y-3)/1=(z+1)/2=t ⇒
получим параметрические уравнения прямой
x=5t+2
y=t+3
z=2t+1

подставим в уравнение плоскости

Составляем уравнение прямой ВК, как уравнение прямой, проходящей через две точки

Каноническое уравнение прямой на плоскости

В данной статье мы рассмотрим каноническое уравнение прямой на плоскости. Определим понятие направляющего вектора прямой. Рассмотрим примеры построения канонического уравнения прямой, если известны две точки этой прямой или если известна одна точка и направляющий вектор этой прямой. Представим метод преобразования уравнения в каноническом виде в параметрический и общий виды.

Определение 1. Любой ненулевой вектор, параллельный данной прямой называется направляющим вектором этой прямой.

На рисунке Рис.1 представлена прямая L и векторы q1, q2, q3, q4. Из определения следует, что векторы q1, q2, q4 являются направляющими векторами прямой L, а q3 − нет.

Каноническое уравнение прямой L на плоскости представляется следующей формулой:

(1)

где x1, y1 координаты некоторой точки M1 на прямой L. Вектор q=<m, p> является направляющим вектором прямой L.

Надо отметить, что при записи уравнения прямой в каноническом виде, допускается, чтобы один из чисел m и p была равна нулю (одновременно m и p не могут быть равным нулю, т.к. направляющий вектор прямой не должен быть нулевым вектором). Равенство нулю одного из знаменателей означает равенство нулю соответствующего числителя. В этом можно убедится, записав уравнение (1) в следующем виде:

.(2)

Выше мы отметили, что прямая L проходит через точку M1(x1, y1). В этом можно убедится, подставив x=x1, y=y1 в уравнение (1).

.(3)

Чтобы убедится, что точки M1(x1, y1) и M2(x2, y2) находятся на прямой L, поочередно подставим в уравнение (3) координаты точек M1 и M2. Получим тождества, следовательно эти точки принадлежат прямой L.

Сравним уравнения (1) и (3). Тогда можно записать q=<m, p>=<x2x1, y2y1>. На рисунке Рис.2 представлен вектор q, которая является разностью векторов, соответствующих точкам M2 и M1. Этот вектор является направляющим вектором прямой L. Следовательно, для определения направляющего вектора прямой, достаточно взять две точки на данной прямой и найти разность между соответсвующими координатами этих точек.

Таким образом, прямая на плоскости определяется точкой и направляющим вектором или двумя точками.

Онлайн калькулятор, для построения прямой через две точки находится тут.

Пример 1. Прямая проходит через точку M=(3,−1) и имеет направляющий вектор q=<−3, 5>. Построить каноническое уравнение прямой.

Решение. Для построения канонического уравнения прямой, подставим координаты точки и направляющего вектора в уравнение (1):

.
.

Пример 2. Прямая проходит через точку M=(2, 2) и имеет направляющий вектор q=<0, 3>. Построить каноническое уравнение прямой.

Решение. Для построения канонического уравнения прямой, подставим координаты точки и направляющего вектора в уравнение (1):

.
.

На рисунке Рис.3 изображена прямая L, точка M=(2, 2) и направляющий вектор q=<0, 3>. Прямая проходит через точку M и параллельна направляющему вектору q.

Пример 3. Прямая проходит через точки M1=(−7, 2) и M2=(−4, 4). Построить каноническое уравнение прямой. Воспользуемся формулой (3). Подставим координаты точек в уравнение (3):

.

Упростим полученное уравнение:

.
.

Приведение канонического уравнения прямой на плоскости к параметрическому виду

Для приведения канонического уравнения прямой на плоскости к параметрическому виду, обозначим каждую часть уравнения (1) переменным t:

.

Выразим переменные x и y через t:

,(4)

где t называется параметром, а уравнение (4) называется параметрическим уравнением прямой.

Для построения уравнения прямой, представленной параметрическом виде (4), достаточно задать параметру t любые значения и вычислить из уравнений (4) соответствующие координаты x и y некоторых точек. Затем провести через эти точки прямую.

Обратное преобразование смотрите здесь.

Пример 4. Каноническое уравнение прямой задана следующим уравнением:

.(5)

Найти параметрическое уравнение прямой.

Решение. Обозначим через t левую и правую части уравнения (5):

.

Выразим переменные x и y через t:

.
.

Приведение канонического уравнения прямой на плоскости к общему виду

Пусть прямая на плоскости задана каноническим уравнением прямой (1). Преобразовав (1) получим:

,
.(6)

Сделаем следующие обозначения:

A=p, B=−m, C=−px1+my1.

Тогда уравнение (6) можно записать в следующем виде:

где n=<A,B> − называется нормальным вектором прямой.

Нетрудно заметить, что нормальный и направляющий векторы прямой перепендикулярны, т.е. скалярное произведение этих векторов равно нулю:

(n,q)=(<A,B>,<m,p>) =(<p,−m>,<m,p>)=pm−mp=0.

Обратное преобразование смотрите здесь.

Пример 5. Каноническое уравнение прямой задана следующим уравнением:

.(7)

Записать общее уравнение прямой.

Решение. Сделаем преобразования уравнения (7):

5.6.3. Как найти ортогональную проекцию прямой на плоскость?

г) Во-первых, что это за проекция?

Проведём очередную физкульт-пятиминутку:

Пожалуйста, найдите дома швабру и поместите её между ног. Представьте, что она бесконечна. Подбородок плотно прижат к груди. Теперь строго перпендикулярно смотрим вниз на швабру. при этом получается такое умное лицо…. Все выполнили задание? Тень от швабры – это и есть её ортогональная проекция на пол.

На чертеже выше наша «швабра» проведена малиновым цветом, а её проекция, прямая – коричневым цветом. Легко заметить, что проекция задаётся пересечением плоскостей: , и на самом деле ответ уже готов:

Другое дело, что часто требуется представить уравнения прямой в канонической форме, это стандартная задача:

Точка , принадлежащая проекции, уже известна, осталось найти её направляющий вектор. Для быстроты используем формулу:

Таким образом, канонические уравнения проекции:

Как уже отмечалось, для решения этой задачи, не обязательно находить именно точку пересечения (лишняя работа). Нас устроит любая точка, принадлежащая проекции, и её легко подобрать из системы .

Есть и другой способ нахождения проекции, связанный с построением перпендикуляра к плоскости «сигма», но я тут прикинул, он вряд ли короче. Однако на всякий случай озвучу алгоритм, вдруг понадобится кому:

– находим точку пересечения прямой и плоскости: (вот в этом способе уже обязательно находим);

– берём произвольную точку , не совпадающую с точкой ) и опускаем из неё перпендикуляр на плоскость (см. следующие параграфы);

– находим основание перпендикуляра (как пересечение прямой и плоскости );

– составляем канонические уравнения проекции по двум точкам: .


источники:

http://matworld.ru/analytic-geometry/kanonicheskoe-uravnenie-prjamoj.php

http://mathter.pro/angem/5_6_3_kak_nayti_proekciyu_pryamoy_na_ploskost.html