Найти каноническое уравнение прямой перпендикулярно плоскости онлайн

Уравнение плоскости, проходящей через прямую перпендикулярно заданной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости проходящей через прямую перпендикулярно заданной плоскости − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L

.(1)
.(2)

Пусть плоскость α1 не перпендинулярно прямой L.

Задача заключается в построении уравнения плоскости α, проходящей через прямую L перпендикулярно плоскости α1 (Рис.1).

Запишем уравнение искомой плоскости α:

Ax+By+Cz+D=0.(3)

Искомая плоскость α проходит через прямую L, следовательно она проходит через точку M0(x0, y0, z0). Тогда справедливо следующее равенство:

Ax0+By0+Cz0+D=0.(4)

и поскольку прямая L принадлежит этой плоскости, то нормальный вектор n=<A, B, C> и направляющий вектор q=<m, p, l> ортогональны:

Для того, чтобы плоскость α была перпендикулярна плоскости α1, нормальные векторы этих плоскостей должны быть ортогональными, т.е. скалярное произведение этих векторов должно быть равным нулю:

AA1+BB1+CC1=0(6)

Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:

(7)

Решив однородную систему линейных уравнений (7) найдем частное решение. (Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L перпендикулярно плоскости α1.

Пример 1. Найти уравнение плоскости α, проходящей через прямую L:

(8)

перпендикулярно плоскости α1 :

(9)

Уравнение искомой плоскости α можно записать следующей формулой:

где n=<A, B, C> нормальный вектор плоскости.

Поскольку плоскость α проходит через прямую L , то она проходит также через точку M0(x0, y0, z0)=M0(−4, 1, 2), тогда уравнение плоскости должна удовлетворять условию:

Ax0+By0+Cz0+D=0(10)

а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:

Am+Bp+Cl=0.(11)

Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:

AA1+BB1+CC1=0(12)
(13)
(14)
(15)

Представим эти уравнения в матричном виде:

(16)

Решим систему линейных уравнений (16) отностительно A, B, C, D:

(17)

Таким образом искомая плоскость имеет нормальный вектор n=<A, B, C>=<9/43,−17/43,5/43>. Тогда подставляя в уравнение плоскости

Ax+By+Cz+D=0(18)

значения A, B, C, D, получим:

Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:

(19)

Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (19).

Пример 2. Найти уравнение плоскости α, проходящей через прямую L:

(20)

перпендикулярно плоскости α1 :

(21)

Уравнение искомой плоскости α можно записать следующей формулой:

где n=<A, B, C> нормальный вектор плоскости.

Так как плоскость α проходит через прямую L , то она проходит также через точку M0(x0, y0, z0)=M0(−3, 1, 5), тогда уравнение плоскости должна удовлетворять условию:

Ax0+By0+Cz0+D=0(22)

а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:

Am+Bp+Cl=0.(23)

Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:

AA1+BB1+CC1=0(24)
(25)
(26)
(27)

Представим эти уравнения в матричном виде:

(28)

Решим систему линейных уравнений (28) отностительно A, B, C, D:

(29)

Таким образом искомая плоскость имеет нормальный вектор n=<A, B, C>=<3/2,−1/2,1>. Тогда подставляя в уравнение плоскости

Ax+By+Cz+D=0(30)

значения A, B, C, D, получим:

Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:

(31)

Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (31).

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости

Наша цель построить уравнение прямой, проходящей через данную точку M0 и перпендикулярной к данной плоскости Ax+By+Cz+D=0.

Общее уравнение плоскости имеет вид:

(1)

где n(A,B,C)− называется нормальным вектором плоскости.

Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:

(2)

Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .

Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональный плоскости (1) имеет следующий вид:

(3)

Пример 1. Построить прямую, проходящую через точку M0(5, -4, 4) и перпендикулярной плоскости

Общее уравнение плоскости имеет вид (1), где :

(4)

Подставляя координаты точки M0(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:

Уравнение перпендикулярной прямой

Альтернативная формула
Прямая, проходящая через точку M1(x1; y1) и перпендикулярная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения перпендикулярной прямой (см. также как составить уравнение параллельной прямой).

Пример №1 . Составить уравнение прямой, проходящей через точку (2; -1) и перпендикулярной 4x-9y=3 .
Решение. Данную прямую можно представить уравнением y = 4 /9x – 1 /3 (a = 4 /9). Уравнение искомой прямой есть y+1 = -9/4(x-2) , т.е. 9x+4y-14=0 .

Пример №2 . Решая пример 1 (A=4, B=-9) по формуле (2), найдем 4(y+1)+9(x-2)=0 , т.е. 9x+4y-14=0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-3, -2) перпендикулярно прямой 2y+1=0 .
Решение. Здесь A=0, B=2. Формула (2) дает -2(x+3)=0, т.е. x+3=0 . Формула (1) неприменима, так как a=0 .


источники:

http://matworld.ru/analytic-geometry/prjamaja-ploskost-online.php

http://math.semestr.ru/line/perpendicular.php