Найти комплексные корни кубического уравнения

Примеры решений кубических уравнений

Обзор методов решения кубических уравнений приведен на странице “Решение кубических уравнений”. Здесь мы приводим два примера, используя формулы Кардано и Виета.

Пример решения кубического уравнения с комплексными корнями

Решить кубическое уравнение:
(1.1) .

Решение

Поиск целых корней

Уравнение (1.1) имеет целые коэффициенты. Проверим, не содержит ли это уравнение целых корней. Член без – это 1. У числа 1 есть два делителя: 1 и – 1 . Подставим в уравнение (1.1) и . Ни для одного из этих чисел уравнение не выполняется. Следовательно, целых корней нет.

Сведение уравнения к приведенному виду

Пусть обозначают коэффициенты при , и свободный член. Делаем подстановку
(1.2) .
В результате получаем уравнение приведенного вида:
(1.3) ,
где
;
.

Определение вида корней

Определяем, имеет ли уравнение комплексные корни. Для этого находим дискриминант:
.
Дискриминант положителен. Следовательно, уравнение имеет один действительный корень и два комплексно сопряженных.

Нахождение корней по формуле Кардано

Поскольку дискриминант положителен, то находим корни по формуле Кардано:
, ,
где
; ; .
При , для величин и , можно взять действительные значения корней. Тогда соотношение выполняется автоматически.

Итак, мы нашли корни неполного кубического уравнения. По формуле (1.2) находим корни исходного уравнения:
.

Ответ

Пример с действительными корнями

Решить кубическое уравнение:
(2.1) .

Решение

Поиск целых корней

Уравнение (2.1) имеет целые коэффициенты. Проверим, нет ли у этого уравнения целых корней. Свободный член – это 1. У него есть два делителя: 1 и – 1 . Подставим в уравнение (2.1) и . Уравнение не выполняется ни для одного из этих чисел. Следовательно, целых корней нет.

Сведение уравнения к приведенному виду

В исходном уравнении (2.1),
.
Делаем подстановку
(2.2)
и приводим уравнение (2.1) к приведенному (неполному) виду:
(2.3) ,
где
;
.

Определение вида корней

Определяем, имеет ли уравнение комплексные корни. Находим дискриминант:
.
Дискриминант отрицателен. Следовательно, уравнение имеет три действительных корня.

Нахождение корней по формуле Виета

Итак, мы нашли корни приведенного кубического уравнения. По формуле (2.2) находим корни исходного уравнения:
.

Ответ

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

Автор: Олег Одинцов . Опубликовано: 02-10-2016

Кубическое уравнение

Кубическое уравнение имеет вид ax 3 +bx 2 +cx+d=0 , где переменная обязательно должна присутствовать в третьей степени. Если переменная x отсутствует для второй или первой степени, то эти коэффициенты приравниваются к нулю.

Для решения кубического уравнения существует теорема Виета-Кардана, которая предлагает ряд формул, через которые вычисляется количество и значения корней уравнения не только на множестве действительных чисел, но и включая комплексные числа. По теореме Виета-Кардана, нужно рассчитать следующие параметры.

Если параметр S>0 , то данное кубическое уравнение имеет три корня:

Если S , то тригонометрические функции заменяются гиперболическими и корни кубического уравнения вычисляются по гораздо более внушительным формулам.

Корни кубического комплексного уравнения

Коэффиценты комплексного кубического уравнения
Исходное кубическое уравнение
Первый корень
Второй корень
Третий корень

Мы добрались до возможности решать кубические уравнения общего вида, имеющего комплексные коэффиценты.

Использовать будем методику которая называется подстановкой Виета.

Итак, когда мы из общего уравнения третьей степени

мы можем получить уравнение

Фактически, это квадратное уравнение. Решив которое мы получим корни w.

Удивительно, но нам совершенно не важно какой корень мы возьмем от этого квадратного уравнения. Окончательный вариант все равно будет правильный.

А через них мы узнаем корни приведенного уравнения.

Чем удобен такой подход, от например решения уравнения по методу Кардано?

Он алгоритмически понятен и нагляден. И это главное.

Бот корректно вычисляет корни кубического комплексного уравнения, даже в том случае, если коэффициентами являются какие либо выражения ( с вещественными и/или мнимыми значениями)

Пишем коэффиценты слева направо (через пробел)

Исходное кубическое уравнение
Первый корень
Второй корень
Третий корень

Корни его будут равны

Исходное кубическое уравнение
Первый корень
Второй корень
Третий корень

А вот корни обычного уравнения с вещественными числами.

«Это легкотня» — говорит моя дочь, складывая два плюс два.


источники:

http://geleot.ru/education/math/algebra/equation/cubic_equation

http://abakbot.ru/online-16/348-complex-3