Найти координаты вектора если задано общее уравнение

2.2.3. Как найти направляющий вектор
по общему уравнению прямой?

Если прямая задана общим уравнением , то вектор является направляющим вектором данной прямой.

Примеры нахождения направляющих векторов прямых:

Утверждение позволяет найти лишь один направляющий вектор из бесчисленного множества, но нам больше и не нужно. Хотя в ряде случаев координаты направляющих векторов целесообразно сократить: так, уравнение задаёт прямую, которая параллельна оси и координаты полученного направляющего вектора удобно разделить на –2, получая в точности базисный вектор в качестве направляющего вектора. Аналогично, уравнение задаёт прямую, параллельную оси , и, разделив координаты вектора на 5, получаем направляющий вектор .

Читателям с низким уровнем подготовки рекомендую постоянно выполнять чертежи, чтобы лучше понимать мои объяснения!

Теперь выполним проверку Задачи 61. Решение уехало вверх, поэтому напоминаю, что в ней мы составили уравнение прямой по точке и направляющему вектору . Проверка состоит в двух действиях:

Во-первых, по уравнению прямой восстанавливаем её направляющий вектор: – всё нормально, получили исходный вектор (в ряде случаев может получиться коллинеарный исходному вектор, и это несложно заметить по пропорциональности соответствующих координат).

Во-вторых, координаты точки должны удовлетворять уравнению . Подставляем их в уравнение:

– получено верное равенство, чему мы очень рады.

Вывод: задание выполнено правильно.

Задача 62

Составить уравнение прямой по точке и направляющему вектору

Это задача для самостоятельного решения. И проверка, проверка, проверка!

Старайтесь всегда (если это возможно) выполнять проверку на черновике.
Глупо допускать ошибки там, где их 100%-но можно избежать!

В том случае, если одна из координат направляющего вектора равна нулю, поступают очень просто:

Задача 63

Составить уравнение прямой по точке и направляющему вектору .

Решение: формула не годится, так как знаменатель правой части равен нулю. Но выход прост! Используя свойства пропорции, перепишем уравнение в виде , и дальнейшее покатилось по глубокой колее:

переставим части местами:

Ответ:

Проверка:

1) Восстановим направляющий вектор найденной прямой :
– полученный вектор коллинеарен исходному направляющему вектору .

2) Подставим координаты точки в уравнение :

– получено верное равенство, значит, точка удовлетворяет уравнению.

Вывод: задание выполнено правильно

Возникает вопрос: зачем маяться с формулой , если существует универсальная версия , которая сработает в любом случае?

Причин две. Во-первых, формула в виде дроби гораздо лучше запоминается. А во-вторых, недостаток универсальной формулы состоит в том, что здесь повышается риск запутаться при подстановке координат.

Задача 64

Составить уравнение прямой по точке и направляющему вектору , выполнить проверку.

Это задача для самостоятельного решения. Кстати, проверку можно выполнять и графически – решили задачу и изобразили всё на чертеже. Правда, такой способ бывает неудобен или трудновыполнИм, и поэтому всё-таки «рулит» аналитика.

Нахождение координат вектора

В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.

Нахождение координат вектора

Для того, чтобы найти координаты вектора AB , нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).

Формулы для определения координат вектора

» data-lang=»default» data-override=»<"emptyTable":"","info":"","infoEmpty":"","infoFiltered":"","lengthMenu":"","search":"","zeroRecords":"","exportLabel":"","file":"default">» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
Для плоских задачДля трехмерных задачДля n-мерных векторов

Задание. Даны точки $A(4 ; 3 ; 2)$, $B(-3 ; 2 ;-1)$ и $C(-1 ; 0 ; 1)$ . Найти координаты вектора $\overline $, $\overline $ .

Решение. Точки заданны в пространстве, поэтому для нахождения координат искомых векторов будем пользоваться формулой

Подставляя заданные координаты, получим:

Для вектора $\overline $ имеем:

Ответ. $\overline=(-7 ;-1 ;-3), \overline=(-2 ; 2 ;-2)$