Найти корень нелинейного уравнения методом простых итераций

Метод итераций

Правила ввода функции

  1. Примеры
    ≡ x^2/(1+x)
    cos 2 (2x+π) ≡ (cos(2*x+pi))^2
    ≡ x+(x-1)^(2/3)

На рис.1а, 1б в окрестности корня |φ′(x)| 1, то процесс итерации может быть расходящимся (см. рис.2).

Достаточные условия сходимости метода итерации

Процесс нахождения нулей функции методом итераций состоит из следующих этапов:

  1. Получить шаблон с омощью этого сервиса.
  2. Уточнить интервалы в ячейках B2 , B3 .
  3. Копировать строки итераций до требуемой точности (столбец D ).

Примечание: столбец A — номер итерации, столбец B — корень уравнения X , столбец C — значение функции F(X) , столбец D — точность eps .

3.2.1. Метод простых итераций (метод последовательных приближений)

Метод реализует стратегию постепенного уточнения значения корня.

Постановка задачи. Дано нелинейное уравнение (3.1). Корень отделен x* Î [a;b]. Требуется уточнить корень с точностью ε.

Уравнение ( 3.1) преобразуем к эквивалентному виду x=φ(x), (3.7)

Что можно сделать всегда и притом множеством способов.

Выберем начальное приближение x0Î [a;b].

Вычислим новые приближения:

Xi=φ(xi-1) , i=1,2,… где i − номер итерации. (3.8)

Последовательное вычисление значений xi по формуле (3.8) называется итерационным процессом метода простых итераций, а сама формула — формулой итерационного процесса метода.

Если , то итерационный процесс Сходящийся .

Условие сходимости (3.9)

Точное решение x* получить невозможно, так как требуется Бесконечный Итерационный процесс.

Можно получить Приближенное Решение, прервав итерационный (3.8) при достижении условия

, (3.10)

Где ε — заданная точность; i — номер последней итерации.

В большинстве случаев условие завершения итерационного процесса (3.10) обеспечивает близость значения xi к точному решению:

Рассмотрим геометрическую иллюстрацию метода простых итераций.

Уравнение (3.7) представим на графике в виде двух функций: y1 = x и y2= φ(x).

Возможные случаи взаимного расположения графиков функций, и соответственно, видов итерационного процесса показаны на рис. 3.7 – 3.10.

Рис. 3.7 Итерационный процесс для случая 0 1 xÎ[a, b].

Рис. 3.10 Итерационный процесс для случая £ — 1 xÎ[a, b].

Из анализа графиков следует, что скорость сходимости растет при уменьшении значения

Метод достаточно прост, обобщается на системы уравнений, устойчив к погрешности округления (она не накапливается).

При разработке алгоритма решения нелинейного уравнения методом простых итераций следует предусмотреть защиту итерационного процесса от зацикливания: использовать в качестве дополнительного условия завершения итерационного процесса превышение заданного максимального числа итераций.

Рис 3.11. Алгоритм решения нелинейного уравнения методом
простых итераций:

Основной проблемой применения метода является обеспечение сходимости итерационного процесса: нужно найти такое эквивалентное преобразование (3.1) в (3.7), чтобы обеспечивалось условие сходимости (3.9) .

Простейшие эквивалентные преобразования, например:

F(x) = 0 => x+f(x) = x, т. е. φ(x) = x + f(x)

Или выразить явно x из (3.1)

F(x) = 0 => x — φ(x) = 0 => x = φ(x)

Не гарантируют сходимость.

Рекомендуется следующий способ получения формулы Сходящегося итерационного процесса.

Пусть .

Если это не так, переписать уравнение (3.1) в виде

Умножить обе части уравнения на и к обеим частям прибавить x:

Константу l вычислить по формуле:

(3.11)

Такое значение λ гарантирует сходящийся итерационный процесс по формуле

Xi = xi+1− λ f(x) (3.12)

Где i=1,2,… — номер итерации, x0Î[a, b] – начальное приближение.

Методом простых итераций уточнить корень уравнения x3=1-2 x с точностью ε=0,001. Корень отделен ранее (см. пример 3.1), x* Î [0;1].

Сначала нужно получить формулу сходящегося итерационного процесса.

Из уравнения выразим явно x:

Проверим условия сходимости для полученной формулы:

, ,

для x Î (0;1].

Условие сходимости не соблюдается, полученная формула не позволит уточнить корень.

Воспользуемся описанным выше способом получения формулы итерационного процесса (формулы 3.11, 3.12).

, , для всех x Î [0;1].

Наибольшее значение принимает при x = 1, т. е.

Следовательно .

Формула Сходящегося итерационного процесса

Уточним корень с помощью данной формулы.

Выберем начальное приближение на [0;1], например x0=0,5 (середина отрезка).

Вычислим первое приближение

Проверим условие завершения итерационного процесса

Расчет следует продолжить.

X6 = 0,453917 − ответ, т. к.

Проверим полученное значение, подставив в исходное уравнение:

Значение f(x) близко к 0 с точностью, близкой к ε, следовательно, корень уточнен правильно.

Решение нелинейных уравнений в Matlab

Доброго времени суток. В этой статье мы разберем решение простых нелинейных уравнений с помощью средств Matlab. Посмотрим в действии как стандартные функции, так и сами запрограммируем три распространенных метода для решения нелинейных уравнений.

Общая информация

Уравнения, которые содержат переменные, находящиеся в степенях, отличающихся от единицы, или имеющие нелинейные математические выражения (корень, экспонента, логарифм, синус, косинус и т.д.), а также имеющие вид f(x) = 0 называются нелинейными. В зависимости от сложности такого уравнения применяют методы для решения нелинейных уравнений.

В этой статье, помимо стандартных функций Matlab, мы рассмотрим следующие методы:

  • Метод перебора
  • Метод простых итераций
  • Метод половинного деления

Рассмотрим коротко их алгоритмы и применим для решения конкретной задачи.

Стандартные функции Matlab

Для решения нелинейных уравнений в Matlab есть функция fzero. Она принимает в качестве аргументов саму функцию, которую решаем, и отрезок, на котором происходит поиск корней нелинейного уравнения.

И сразу же разберем пример:

Решить нелинейное уравнение x = exp(-x), предварительно определив интервалы, на которых существуют решения уравнения.

Итак, для начала следует привести уравнение к нужному виду: x — exp(-x) = 0 , а затем определить интервалы, в которых будем искать решение уравнения. Методов для определения интервалов множество, но так как пример достаточно прост мы воспользуемся графическим методом.

Здесь задали примерные границы по оси x, чтобы можно было построить график и посмотреть как ведет себя функция. Вот график:

Из графика видно, что на отрезке [0;1] есть корень уравнения (там, где y = 0), соответственно в дальнейшем будем использовать этот интервал. Чем точнее выбран интервал, тем быстрее метод придет к решению уравнения, а для сложных уравнений правильный выбор интервала определяет погрешность, с которой будет получен ответ.

С помощью стандартной функции Matlab находим корень нелинейного уравнения и выводим. Теперь для проверки отобразим все это графически:

Как вы видите, все достаточно точно просчиталось. Теперь мы исследуем эту же функцию с помощью других методов и сравним полученные результаты.

Метод перебора Matlab

Самый простой метод, который заключается в том, что сначала задается какое то приближение x (желательно слева от предполагаемого корня) и значение шага h. Затем, пока выполняется условие f(x) * f(x + h) > 0, значение x увеличивается на значение шага x = x + h. Как только условие перестало выполняться — это значит, что решение нелинейного уравнения находится на интервале [x; x + h].

Теперь реализуем метод перебора в Matlab:

Лучше всего создать новый m-файл, в котором и прописать код. После вызова получаем такой вывод:

Функцию объявляем с помощью очень полезной команды inline, в цикле пока выполняется условие отсутствия корней (или их четного количества), прибавляем к x значение шага. Очевидно, что чем точнее начальное приближение, тем меньше итераций необходимо затратить.

Метод простых итераций Matlab

Этот метод заключается в том, что функцию преобразуют к виду: x = g(x). Эти преобразования можно сделать разными способами, в зависимости от вида начальной функции. Помимо этого следует задать интервал, в котором и будет производиться итерационный процесс, а также начальное приближение. Сам процесс строится по схеме xn= g(xn-1). То есть итерационно проходим от предыдущего значения к последующему.

Процесс заканчивается как только выполнится условие: , то есть, как только будет достигнута заданная точность. И сразу же разберем реализацию метода простых итераций в Matlab для примера, который был приведен выше.

Здесь должно быть все понятно, кроме одного: зачем задавать число итераций? Это нужно для того, чтобы программа не зацикливалась и не выполняла ненужные итерации, а также потому что не всегда программа может просчитать решение с нужной точностью — поэтому следует ограничивать число итераций.

А вот и вывод программы:

Очевидно, что метод простых итераций работает гораздо быстрее и получает точное решение.

Метод половинного деления Matlab

Метод достаточно прост: существует отрезок поиска решения [a;b], сначала находят значение функции в точке середины c, где c = (a+b)/2. Затем сравнивают знаки f(a) и f(c). Если знаки разные — то решение находится на отрезке [a;c], если нет — то решение находится на отрезке [c;b]. Таким образом мы сократили область в 2 раза. Такое сокращение происходит и дальше, пока не достигнем заданной точности.

Перейдем к реализации метода в Matlab:

Все самое важное происходит в цикле: последовательно сокращаем область нахождения решения, пока не будет достигнута заданная точность.
Вот что получилось в выводе:

Этот метод хорошо работает, когда правильно определен интервал, на котором находится решение. Тем не менее, метод простых итераций считается наиболее точным и быстрым.

Заключение

Сегодня мы рассмотрели решение нелинейных уравнений в Matlab. Теперь нам известны методы перебора, половинного деления, простых итераций. А также, когда нам не важно реализация метода, то можно использовать стандартную функцию в Matlab.

На этом все — спасибо за внимание. В следующей статье мы разберем решение систем нелинейных уравнений в matlab.


источники:

http://matica.org.ua/metodichki-i-knigi-po-matematike/vychislitelnaia-matematika/3-2-1-metod-prostykh-iteratcii-metod-posledovatelnykh-priblizhenii

http://codetown.ru/matlab/reshenie-nelinejnyh-uravnenij/