Найти наибольшее значение суммы корней уравнения

Квадратные уравнения с параметром

Задачи с параметрами. Простейшие задачи на квадратный трёхчлен.

Сегодня мы рассмотрим задачи на квадратный трёхчлен, про который, в зависимости от параметра, надо будет что-то выяснить. Это «что-то» может быть самым разнообразным, насколько только хватит фантазии у составителей задачи. Это самый простой тип задач с параметрами. И, если на ЕГЭ вам попалась такая — считайте, что вам повезло!

Но, прежде чем приступать к разбору самих задач, ответьте сами себе на такие простые вопросы:

— Что такое квадратное уравнение, как оно выглядит и как решается?

— Что такое дискриминант и куда его пристроить?

— Что такое теорема Виета и где её можно применить?

Если вы верно отвечаете на эти простые вопросы, то 50% успеха в решении параметрических задач на квадратный трёхчлен вам обеспечены! А остальные 50% — это обычная алгебра и арифметика: раскрытие скобок, приведение подобных, решение уравнений, неравенств и систем и т.д.

Для начала рассмотрим совсем безобидную задачку. Для разминки. 🙂

Пример 1

Приступаем к решению. Во-первых, чтобы в будущем не накосячить в коэффициентах, всегда полезно выписать их отдельно. Прямо в столбик. Вот так:

Да-да! Часть коэффициентов в уравнении (а именно — b и с) зависит от параметра. В этом как раз и состоит вся фишка таких задач. А теперь снова въедливо перечитываем условие. Ключевой зацепкой в формулировке задания являются слова «единственный корень». И когда же квадратное уравнение имеет единственный корень? Подключаем наши теоретические знания о квадратных уравнениях. Только в одном единственном случае — когда его дискриминант равен нулю.

Осталось составить выражение для дискриминанта и приравнять его к нулю. Поехали!

Теперь надо приравнять наш дискриминант к нулю:

Можно, конечно, решать это квадратное уравнение через дискриминант, а можно немного схитрить. На что у нас похожа левая часть, если как следует присмотреться? Она у нас похожа на квадрат разности (a-3) 2 !

Респект внимательным! Верно! Если заменить наше выражение слева на (a-3) 2 , то уравнение будет решаться в уме!

Вот и всё. Это значит, что единственный корень наше квадратное уравнение с параметром будет иметь только в одном единственном случае — когда значение параметра «а» равно тройке.)

Это был разминочный пример. Чтобы общую идею уловить.) Теперь будет задачка посерьёзнее.

Пример 2

Вот такая задачка. Начинаем распутывать. Первым делом выпишем наше квадратное уравнение:

0,5x 2 — 2x + 3a + 1,5 = 0

Самым логичным шагом, было бы умножить обе части на 2. Тогда у нас исчезнут дробные коэффициенты и само уравнение станет посимпатичнее. Умножаем:

Выписываем в столбик наши коэффициенты a, b, c:

Видно, что коэффициенты a и b у нас постоянны, а вот свободный член с зависит от параметра «а»! Который может быть каким угодно — положительным, отрицательным, целым, дробным, иррациональным — всяким!

А теперь, чтобы продвинуться дальше, вновь подключаем наши теоретические познания в области квадратных уравнений и начинаем рассуждать. Примерно так:

«Для того чтобы сумма кубов корней была меньше 28, эти самые корни, во-первых, должны существовать. Сами по себе. В принципе. А корни у квадратного уравнения существуют, тогда и только тогда, когда его дискриминант неотрицательный. Кроме того, в задании говорится о двух различных корнях. Эта фраза означает, что наш дискриминант обязан быть не просто неотрицательным, а строго положительным

Если вы рассуждаете таким образом, то вы движетесь правильным курсом! Верно.) Составляем условие положительности для дискриминанта:

Полученное условие говорит нам о том, что два различных корня у нашего уравнения будет не при любых значениях параметра «а», а только при тех, которые меньше одной шестой! Это глобальное требование, которое должно выполняться железно. Неважно, меньше 28 наша сумма кубов корней или больше. Значения параметра «а», большие или равные 1/6, нас заведомо не устроят. Гуд.) Соломки подстелили. Движемся дальше.

Теперь приступаем к загадочной сумме кубов корней. По условию она у нас должна быть меньше 28. Так и пишем:

Значит, для того чтобы ответить на вопрос задачи, нам надо совместно рассмотреть два условия:

А дальше начинаем отдельно работать с этой самой суммой кубов. Есть два способа такой работы: первый способ для трудолюбивых и второй способ — для внимательных.

Способ для трудолюбивых заключается в непосредственном нахождении корней уравнения через параметр. Прямо по общей формуле корней. Вот так:

Теперь составляем нужную нам сумму кубов найденных корней и требуем, чтобы она была меньше 28:

А дальше — обычная алгебра: раскрываем сумму кубов по формуле сокращённого умножения, приводим подобные, сокращаем и т.д. Если бы корни нашего уравнения получились покрасивее, без радикалов, то такой «лобовой» способ был бы неплох. Но проблема в том, что наши корни выглядят немного страшновато. И подставлять их в сумму кубов как-то неохота, да. Поэтому, для того чтобы избежать этой громоздкой процедуры, я предлагаю второй способ — для внимательных.

Для этого раскрываем сумму кубов корней по соответствующей формуле сокращенного умножения. Прямо в общем виде:

А дальше проделываем вот такой красивый фокус: во вторых скобках выражаем сумму квадратов корней через сумму корней и их произведение. Вот так:

Казалось бы, и что из этого? Сейчас интересно будет! Давайте, посмотрим ещё разок на наше уравнение. Как можно внимательнее:

Чему здесь равен коэффициент при x 2 ? Правильно, единичке! А как такое уравнение называется? Правильно, приведённое! А, раз приведённое, то, стало быть, для него справедлива теорема Виета:

Вот и ещё одна теорема нам пригодилась! Теперь, прямо по теореме Виета, подставляем сумму и произведение корней в наше требование для суммы кубов:

Осталось раскрыть скобки и решить простенькое линейное неравенство:

Вспоминаем, что ещё у нас есть глобальное требование a 0 необходимо пересечь с условием a . Рисуем картинку, пересекаем, и записываем окончательный ответ.

Да. Вот такой маленький интервальчик. От нуля до одной шестой… Видите, насколько знание теоремы Виета, порой, облегчает жизнь!

Вот вам небольшой практический совет: если в задании говорится о таких конструкциях, как сумма, произведение, сумма квадратов, сумма кубов корней, то пробуем применить теорему Виета. В 99% случаев решение значительно упрощается.

Это были довольно простые примеры. Чтобы суть уловить. Теперь будут примеры посолиднее.

Например, такая задачка из реального варианта ЕГЭ:

Пример 3

Что, внушает? Ничего не боимся и действуем по нашему излюбленному принципу: «Не знаешь, что нужно, делай что можно!»

Опять аккуратно выписываем все коэффициенты нашего квадратного уравнения:

А теперь вчитываемся в условие задачи и находим слова «модуль разности корней уравнения». Модуль разности нас пока не волнует, а вот слова «корней уравнения» примем во внимание. Раз говорится о корнях (неважно, двух одинаковых или двух различных), то наш дискриминант обязан быть неотрицательным! Так и пишем:

Что ж, аккуратно расписываем наш дискриминант через параметр а:

А теперь решаем квадратное неравенство. По стандартной схеме, через соответствующее квадратное уравнение и схематичный рисунок параболы:

Значит, для того чтобы у нашего уравнения в принципе имелись хоть какие-то корни, параметр а должен находиться в отрезке [-1; 3]. Это железное требование. Хорошо. Запомним.)

А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука

принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x1 — x2. Теорема Виета здесь в этот раз бессильна.

Что ж, считаем корни по общей формуле:

Дальше составляем модуль разности этих самых корней:

Теперь вспоминаем, что корень квадратный — величина заведомо неотрицательная. Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:

И эта функция f(a) должна принимать наибольшее значение. А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная! Вперёд и с песнями!)

Дифференцируем нашу функцию и приравниваем производную к нулю:

Получили единственную критическую точку a = 2. Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).

Слева от двойки производная положительна, а справа от двойки — отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию мы рассматриваем только на отрезке [1; 3]. Вне этого отрезка нашей функции f(a) попросту не существует. Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.

Всё. Вот теперь наша задача полностью решена.

Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное — не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).

Пример 4

Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?

Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)

При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным. То есть, первое наше требование будет D > 0.

А далее по накатанной колее. Считаем дискриминант:

D = 4(a-1) 2 — 4a(a-4) = 4a 2 -8a+4-4a 2 +16a = 4+8a

Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.

Далее в задаче идёт речь о расстоянии между корнями. Расстояние между корнями, в математическом смысле, означает вот такую величину:

Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) — величина неотрицательная. Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль — функция чётная и сжигает минус. Точно так же, как и квадрат.

Значит, ответом на вопрос задачи является решение вот такой системы:

Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:

Отлично. Корни получены. Теперь начинаем формировать наше расстояние:

Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:

Неравенство — не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль — величина неотрицательная.

Итак, смело умножаем обе части неравенства на положительное число |a|. Знак неравенства сохраняется:

Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая — когда параметр а, стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.

Случай 1 (a>0, |a|=a)

В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:

Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:

Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно — случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются.

Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:

А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a>0. С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a 0 и a

Упрощаем нашу совокупность с учётом главного условия a>0:

Вот так. А теперь решаем самое обычное квадратное неравенство:

Нас интересует промежуток между корнями. Стало быть,

Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:

Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:

Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.

Случай 2 (a

В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:

Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):

С учётом общего требования a

А дальше снова решаем обычное квадратное неравенство:

И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1! Решение этого неравенства выглядело вот так:

Осталось лишь пересечь этот интервал с нашим новым условием a

Вот и второй кусочек ответа готов:

Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число

с нулём. Вот так:

А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему):

Готово дело. Эти два интервала — это пока ещё только решение неравенства

Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!

Ещё у нас есть условие положительного дискриминанта! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества:

Но есть одна проблемка. Мы не знаем, как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа:

Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:

Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:

Всё, задача полностью решена и можно записывать окончательный ответ.

Ну как? Уловили суть? Тогда решаем самостоятельно.)

1. Найдите все значения параметра b, при которых уравнение

ax 2 + 3x +5 = 0

имеет единственный корень.

2. Найдите все значения параметра а, при каждом из которых больший корень уравнения

x 2 — (14a-9)x + 49a 2 — 63a + 20 = 0

3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения

x 2 — 4ax + 5a = 0

4. Найдите все значения параметра а, при каждом из которых уравнение

x 2 + 2(a-2)x + a + 3 = 0

имеет два различных корня, расстояние между которыми больше 3.

Найти наибольшее значение суммы корней уравнения

Цель: проверить знания, умения и навыки учащихся по теме.
Тип урока: урок контроля, оценки и коррекции знаний.

ХОД УРОКА

I. Сообщение темы и цели урока

II. Общая характеристика контрольной работы

Контрольная работа составлена в 6 вариантах различной сложности (варианты 1, 2 самые простые, варианты 3, 4 сложнее и варианты 5, 6 самые сложные). При этом сложность вариантов нарастает не очень резко. Каждый вариант содержит 6 задач примерно одинаковой сложности (может быть, несколько сложнее две последние задачи).

При проверке вариантов 1, 2 оценка «5» ставится за правильное решение пяти задач, оценка «4» — четырех задач и оценка «3» — трех задач. Одна задача является резервной (или запасной) и дает некоторую свободу выбора учащимся. При таких же критериях оценки за решение задач вариантов 3, 4 дается дополнительно 0,5 балла, вариантов 5, 6 — 1 балл (т. е. оценку «5» можно получить за правильное решение четырех задач).

III. Контрольная работа в 6 вариантах

Вариант 1

  1. Решите уравнение 5х 2 + 10х = 0.
  2. Решите уравнение 9x 2 – 4 = 0.
  3. Решите уравнение х 2 – 7х + 6 = 0.
  4. Решите уравнение 2x 2 + 3х + 4 = 0.
  5. Один из корней уравнения х 2 + ах + 72 = 0 равен 9. Найдите другой корень и коэффициент а.
  6. Периметр прямоугольника равен 26 см, а его площадь — 36 см 2 . Найдите длины сторон прямоугольника.

Вариант 2

  1. Решите уравнение 6х 2 + 18х = 0.
  2. Решите уравнение 4х 2 – 9 = 0.
  3. Решите уравнение x 2 – 8x + 7 = 0.
  4. Решите уравнение 3х 2 + 5x + 6 = 0.
  5. Один из корней уравнения x 2 + 11х + а = 0 равен 3. Найдите другой корень и коэффициент а.
  6. Периметр прямоугольника равен 22 см, а его площадь — 24 см 2 . Найдите длины сторон прямоугольника.

Вариант 3

  1. Решите уравнение 2x 2 – 7х + 5 = 0.
  2. Решите уравнение (2х – 1) 2 – 9 = 0.
  3. Решите уравнение х 2 + 2ах – 3а 2 = 0.
  4. Напишите квадратное уравнение с целыми коэффициентами, корни которого –3 и 1 /2.
  5. Катер прошел по течению реки 30 км и 24 км против течения за 9 ч. Чему равна собственная скорость катера, если скорость течения реки равна 3 км/ч?
  6. Найдите сумму квадратов корней уравнения x 2 + рх + q = 0.

Вариант 4

  1. Решите уравнение 3x 2 – 7х + 4 = 0.
  2. Решите уравнение (3x + 1) 2 – 4 = 0.
  3. Решите уравнение x 2 – 3ах – 4а 2 = 0.
  4. Напишите квадратное уравнение с целыми коэффициентами, корни которого –2 и 1 /3.
  5. Моторная лодка прошла 45 км по течению реки и 22 км против течения, затратив на весь путь 5 ч. Найдите скорость лодки в стоячей воде, если скорость течения реки 2 км/ч.
  6. Найдите сумму обратных величин корней уравнения x 2 + рх + q = 0.

Вариант 5

  1. Решите уравнение 6x 2 + х – 2 = 0.
  2. Решите уравнение (3х + 1) 2 = (х + 2) 2 .
  3. Решите уравнение x 2 – х – а 2 + а = 0.
  4. Даны четыре последовательных целых числа. Сумма произведений двух крайних и двух средних чисел равна 22. Найдите эти числа.
  5. Найдите наименьшее значение суммы корней уравнения x 2 + (8а – а 2 )х – а 4 = 0.
  6. Уравнение x 2 + Зх – 2а 2 – 0 имеет корни х1 и x2. Напишите квадратное уравнение, корни которого равны х1 + 1 и x2 + 1.

Вариант 6

  1. Решите уравнение 9x 2 + 3х – 2 = 0.
  2. Решите уравнение (4х + 3) 2 = (2х – 1) 2 .
  3. Решите уравнение x 2 + 3х – 4а 2 + 6а = 0.
  4. Даны четыре последовательных целых числа. Сумма произведений двух крайних и двух средних чисел равна 38. Найдите эти числа.
  5. Найдите наибольшее значение суммы корней уравнения x 2 + (а 2 – 6а)х – 3а 2 = 0.
  6. Уравнение x 2 + 2х – 3а 2 = 0 имеет корни х1 и x2. Напишите квадратное уравнение, корни которого равны х1 – 1 и x2 – 1.

IV. Подведение итогов контрольной работы

  1. Распределение работ по вариантам и результаты решения. Данные о результатах работы удобно заносить в таблицу (для каждой пары вариантов).

Обозначения:
+ (число решивших задачу правильно или почти правильно);
± (число решивших задачу со значительными погрешностями);
– (число не решивших задачу);
∅ (число не решавших задачу).

  1. Типичные ошибки, возникшие при решении задач.
  2. Наиболее трудные задачи и их разбор (учителем или школьниками, решившими их).
  3. Разбор всей контрольной работы (вывесить на стенде ответы к заданиям и разобрать наиболее трудные варианты).

V. Разбор задач ( ответы и решения )

VI. Подведение итогов урока

Вы смотрели: Поурочное планирование по алгебре для 8 класса. УМК Макарычев (Просвещение). ГЛАВА III. КВАДРАТНЫЕ УРАВНЕНИЯ. § 7. Применение свойств арифметического квадратного корня (11 ч). Урок 53. Контрольная работа № 5 по теме «Квадратные уравнения» + ОТВЕТЫ и РЕШЕНИЯ.

Параметр в квадратном уравнении

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Решение квадратных уравнений с параметрами

Если в уравнении некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение — параметрическим.

Научиться решать любые задачи с параметрами, используя какой-то алгоритм или формулы, нельзя. Надо использовать соображения, рассматривать их как задачи исследовательские.

Уравнение вида ах 2 + bх + с = 0 , а ≠ 0, где коэффициенты а, b, с – любые действительные числа, назы­вается квадратным.

Выражение b 2 4ас называют дискриминантом квадратного уравнения.

Если D = 0, то квадратное уравнение имеет единственный действительный корень (или говорят, что это уравнение имеет два кратных корня ).

Если D > 0, то квадратное уравнение имеет два различных действительных корня .

а ≠ 0, то сумма корней равна , а их произведение равно .

Обратное утверждение: Если числа х 1 , х 2 таковы, что

, , то эти числа – корни уравнения ах 2 + bх + с = 0, а ≠ 0 .

Значения параметра, при которых или при переходе через которые происходит качест­венное изменение уравнения, можно назвать контрольными или особыми. Очень важно уметь нахо­дить их.

При решении квадратного уравнения с параметрами кон­трольными будут те значения параметра, при которых коэффи­циент при х 2 обращается в нуль.

Если этот коэффи­циент равен нулю, то уравнение превращается в линейное;

если же этот коэффи­циент отличен от нуля, то имеем квадратное уравнение (в этом и состоит качественное изменение уравнения).

Понятие квадратного трехчлена и его свойства.

Квадратным трехчленом называется выражение вида ax ²+ bx + c , где a ≠0. Графиком соответствующей квадратичной функции является парабола.

При a a >0 ветви направлены вверх.

Выражение x ²+ px + q называется приведенным квадратным трехчленом.

В зависимости от величины дискриминанта D = b ²- 4 ac возможны следующие случаи расположения графика квадратного трехчлена:

при D >0 существуют две различные точки пересечения параболы с осью Ох (два различных корня трехчлена);

при D =0 эти две точки сливаются в одну, то есть парабола касается оси Ох (один корень трехчлена);

В последнем случае при а>0 парабола лежит целиком выше оси Ох,

«Белое пятнышко» в теме «Квадратный трёхчлен и квадратичная функция» может привести к появлению «мёртвых зон» и провалов в наших знаниях элементарной математики. Кстати, преподаватели мехмата МГУ О. Черкасова и А. Якушева утверждают: « Во многих так называемых задачах повышенной сложности «торчат уши квадратного трехчлена».

. Расположение параболы по отношению к оси абсцисс

в зависимости от коэффициента а и дискриминанта.

Теоремы о знаках корней квадратного трехчлена.

Теорема 1. Для того, чтобы корни квадратного трехчлена имели одинаковые знаки, необходимо и достаточно выполнения соотношений:

а оба корня будут отрицательны, если x 1+ x 2= — b / a

Теорема 2. Для того, чтобы корни квадратного трехчлена имели разные знаки, необходимо и достаточно выполнения соотношения x 1• x 2= c / a

В данном случае нет необходимости проверять знак дискриминанта, поскольку при выполнении условия c / a c a D = b ²-4 ac >0.

Расположение корней квадратного трехчлена

Рассмотрим теперь особенности расположения корней квадратного трехчлена с заданными свойствами на координатной плоскости.

Решение задач, для которых характерны следующие формулировки : при каких значениях параметра корни ( только один корень) больше (меньше, не больше, не меньше) заданного числа р; корни расположены между числами p и q и т.д.; опирается на утверждения о расположении корней квадратичной функции.

При решении многих задач требуется знание следующих теорем и следствий.

Пусть f(х) = ах 2 + bx + с имеет действительные корни х1, х2 (которые могут быть кратными), а М, N – какие-нибудь действи­тельные числа, причем М

Теорема 1. Для того чтобы оба корня квадратного трехчлена были меньше, чем число М (то есть лежали на числовой оси ле­вее, чем точка М), необходимо и достаточно выполнение сле­дующих условий:

или

Теорема 2. Для того чтобы один из корней квадратного трехчлена был меньше, чем число М, а другой больше, чем М (то есть точка М лежала бы между корнями), необходимо и дос­таточно выполнение следующих условий:

или

Эти две системы можно заменить формулой .

Теорема 3. Для того чтобы оба корня квадратного трехчлена были больше, чем число М (то есть лежали на числовой оси правее, чем точка М), необходимо и дос­таточно выполнение следующих условий:

или

Следствие 1. Для того , чтобы оба корня квадратного трехчлена были меньше, чем число М, но меньше, чем число N (то есть лежали в интервале между М и N, необходимо и достаточно выполнение следующих условий:

или

Следствие 2. Для того чтобы больший корень квадратного трехчлена лежал в интервале между М и N, необходимо и достаточно выполнение следующих условий:

или

Следствие 3. Для того чтобы только меньший корень квадратного трехчлена лежал в интервале между М и N, необходимо и достаточно выполнение следующих условий:

или

Следствие 4. Для того чтобы один из корней квадратного трехчлена был меньше, чем число М, но меньше, а другой больше, чем число N (то есть отрезок МN лежал внутри интервала между корнями), необходимо и достаточно выполнение следующих условий:

или

Акцентировать внимание надо на то, что здесь контрольными являются: направление ветвей параболы, знаки значений f(M), f(N), расположение вершины параболы..

Задача 1. При каких значениях параметра а уравнение х 2 +2∙(а+1)х+9=0 имеет два различных положительных корня?

Решение. Так как по условию корни различны, то D >0. Воспользуемся теоремой 1(о знаках корней квадратного трехчлена). Составим систему :

D= (a+1) 2 — 9 >0, (a-2)∙(a+4)>0,

Решив последнюю систему, получим , что -∞ a a

Задача 2. При каких значениях параметра а уравнение х 2 -4х + (4-а 2 )=0

имеет два корня разных знаков?

Решение. Воспользуемся теоремой 2 ( о знаках корней квадратного трехчлена). Запишем условие:

4-а 2 2 > 4 │а│> 2 => а 2. Ответ: а 2 .

Задача 3. При каких значениях параметра а уравнение х 2 – 2ах + а 2 – а- 6 =0 имеет два разных отрицательных корня?

Решение. Воспользуемся теоремой 1 (о расположении корней квадратного трехчлена) и запишем систему :

D >0 , а+6>0,

f (0)>0 ; a 2 — a -6>0.

Решив последнюю систему, получим -6 a a

Задача 4. При каких значениях параметра а число 2 находится между корнями квадратного уравнения х 2 + (4а+5)∙х + 3-2а =0.

Решение. Пусть х1 и х2 корни квадратного трехчлена, причем х1

D= 16a 2 +48 a +13 >0,

F (2)= 2 2 + (4 a +5)∙2 +3- 2 a

Задача 5. При каких значениях параметра а корни уравнения

2 – 2х + а =0 находятся между числами -1 и 1?

Решение. Так как корни находятся между числами -1 и 1,

Следствием 1 и составим систему :

-1 0 ,

Решив систему, получим -2

Теорема Виета и задачи с параметрами.

Задача 6 . При каких значениях параметра a сумма квадратов корней уравнения равна ?

Решение. Найдем дискриминант . Уравнение имеет два корня при любом a. Используя теорему Виета, найдем

+ =(+)²-2=(3 a )²-2 a ²

Поскольку , то , a =0,5; -0,5. Ответ: a =0,5; -0,5.

Задача7 . При каком значении m сумма квадратов корней уравнения

Задача 8. Найти все значения параметра а, при которых модуль разности корней уравнения x 2 -6 x +12+ a 2 -4 a =0 принимает наибольшее значение.

, — корни уравнения, тогда | |

-расстояние между корнями, и оно, по условию, должно быть наибольшим.

Уравнение запишем в виде: -6 x +12=- a ²+4 a

и решим его графически.

= 3, y в =3

-прямая, параллельная оси ОХ.

Чем выше она пройдет, тем больше расстояние между корнями ,т.е. надо узнать, при каком значении а функция у= y ( a )= a ²+4 a

принимает наибольшее значение .

Графиком является парабола, ветви которой направлены вниз.

Функция достигает наибольшего значения при =2.

.

Графический способ определения числа корней уравнения с параметром.

Рациональность любого верного решения опирается на условия задачи и напрямую зависит от них. Иногда графический метод помогает быстрее и удобнее решить задачу.

Остановимся на нахождении числа решений уравнений с параметрами, в которых под знаком модуля находится квадратный трёхчлен.

Задача 9. Найдите число решений уравнения

.

Решение: Построим график функции — 2 x – 3 | .

Выделим полный квадрат:

(1; -4) -координаты вершины параболы

Уравнение = a имеет столько решений, сколько

раз прямая у = а пересекает график функции

если , то графики не имеют общих точек, т.е. нет решения;

если , то графики имеют две общие точки , т.е. два решения;

если , то графики имеют четыре общие точки — четыре решения;

если , то графики имеют три общие точки , т.е. три решения;

если , то графики имеют две общие точки , т.е. два решения.

у

y = a (

4 y = a (

y = a (

х

y = a (

y = a (

Задача 10 . Для каждого значения параметра а определите число решений

уравнения .

Решение: Здесь в отличие от предыдущего уравнения параметр а входит в выражение, как стоящее под знаком модуля, так и находящееся вне его. Преобразуем левую часть данного уравнения:

.

Строим схематически график левой части данного уравнения с учётом того, что дискриминант квадратного трёхчлена всегда положителен: .

Проводим горизонтальные прямые – графики функции у = а + 3

При различных значениях параметра а.

Если , т.е. , то графики и

не пересекаются, и значит, нет решений.

Если а + 3 = 0, т.е. а = -3, то графики пересекаются в двух точках

-уравнение имеет два решения.

Если , то графики имеют четыре общие точки ,

а уравнение – четыре решения.

Найдём, при каких значениях а уравнение будет иметь четыре решения. Для этого решим двойное неравенство

, или

Значит, при и уравнение имеет четыре решения. Если = -1 и а = 2, то графики имеют три

Общие точки . Значит, уравнение имеет три решения.

Если же то графики пересекаются в двух точках , т.е. уравнение имеет два решения.

y = a +3

y = a +3 (

y = a + 3 (

х

Графический метод не дает в большинстве случаев точного решения уравнения, однако, часто оказывается более эффективным, чем аналитический, т.к. он может быть полезен для наглядной иллюстрации

рассуждений. Но не стоит забывать о его «подводных рифах», так как иногда не все решения можно увидеть . В силу ограниченности наших графических возможностей абсолютно точный график в принципе построить нельзя, поэтому слепо доверять рисунку может быть просто опасно. Более того, часто случается, что при решении задач подобным способом не обойтись без аналитических формул и вычислений.


источники:

http://uchitel.pro/%D1%83%D1%80%D0%BE%D0%BA-53-%D0%BA%D0%BE%D0%BD%D1%82%D1%80%D0%BE%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0-%E2%84%96-5-%D0%BF%D0%BE-%D1%82%D0%B5%D0%BC%D0%B5-%D0%BA/

http://infourok.ru/parametr_v_kvadratnom_uravnenii-305376.htm