Найти обратную функцию по уравнению

Взаимно обратные функции, основные определения, свойства, графики

Понятие обратной функции

Допустим, что у нас есть некая функция y = f ( x ) , которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x ∈ a ; b ; область ее значений y ∈ c ; d , а на интервале c ; d при этом у нас будет определена функция x = g ( y ) с областью значений a ; b . Вторая функция также будет непрерывной и строго монотонной. По отношению к y = f ( x ) она будет обратной функцией. То есть мы можем говорить об обратной функции x = g ( y ) тогда, когда y = f ( x ) на заданном интервале будет либо убывать, либо возрастать.

Две этих функции, f и g , будут взаимно обратными.

Для чего вообще нам нужно понятие обратных функций?

Это нужно нам для решения уравнений y = f ( x ) , которые записываются как раз с помощью этих выражений.

Нахождение взаимно обратных функций

Допустим, нам нужно найти решение уравнения cos ( x ) = 1 3 . Его решениями будут все точки: x = ± a rс c o s 1 3 + 2 π · k , k ∈ Z

Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

Разберем несколько задач на нахождение функций, обратных заданным.

Условие: какая функция будет обратной для y = 3 x + 2 ?

Решение

Область определений и область значений функции, заданной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x , то есть выразив x через y .

Мы получим x = 1 3 y — 2 3 . Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x — функцией. Переставим их, чтобы получить более привычную форму записи:

Ответ: функция y = 1 3 x — 2 3 будет обратной для y = 3 x + 2 .

Обе взаимно обратные функции можно отобразить на графике следующим образом:

Мы видим симметричность обоих графиков относительно y = x . Эта прямая является биссектрисой первого и третьего квадрантов. Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

Условие: определите, какая функция будет обратной для y = 2 x .

Решение

Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0 ; + ∞ . Теперь нам нужно выразить x через y , то есть решить указанное уравнение через x . Мы получаем x = log 2 y . Переставим переменные и получим y = log 2 x .

В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

Ответ: y = log 2 x .

На графике обе функции будут выглядеть так:

Основные свойства взаимно обратных функций

В этом пункте мы перечислим основные свойства функций y = f ( x ) и x = g ( y ) , являющихся взаимно обратными.

  1. Первое свойство мы уже вывели ранее: y = f ( g ( y ) ) и x = g ( f ( x ) ) .
  2. Второе свойство вытекает из первого: область определения y = f ( x ) будет совпадать с областью значений обратной функции x = g ( y ) , и наоборот.
  3. Графики функций, являющихся обратными, будут симметричными относительно y = x .
  4. Если y = f ( x ) является возрастающей, то и x = g ( y ) будет возрастать, а если y = f ( x ) убывает, то убывает и x = g ( y ) .

Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать. Допустим, что у нас есть две взаимно обратные функции y = f ( x ) = a x и x = g ( y ) = log a y . Согласно первому свойству, y = f ( g ( y ) ) = a log a y . Данное равенство будет верным только в случае положительных значений y , а для отрицательных логарифм не определен, поэтому не спешите записывать, что a log a y = y . Обязательно проверьте и добавьте, что это верно только при положительном y .

А вот равенство x = f ( g ( x ) ) = log a a x = x будет верным при любых действительных значениях x .

Не забывайте про этот момент, особенно если приходится работать с тригонометрическими и обратными тригонометрическими функциями. Так, a r c sin sin 7 π 3 ≠ 7 π 3 , потому что область значений арксинуса — π 2 ; π 2 и 7 π 3 в нее не входит. Верной будет запись

a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3

А вот sin a r c sin 1 3 = 1 3 – верное равенство, т.е. sin ( a r c sin x ) = x при x ∈ — 1 ; 1 и a r c sin ( sin x ) = x при x ∈ — π 2 ; π 2 . Всегда будьте внимательны с областью значений и областью определений обратных функций!

Графики взаимно обратных функций

  • Основные взаимно обратные функции: степенные

Если у нас есть степенная функция y = x a , то при x > 0 степенная функция x = y 1 a также будет обратной ей. Заменим буквы и получим соответственно y = x a и x = y 1 a .

На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

  • Основные взаимно обратные функции: показательные и логарифмические

Возьмем a,которое будет положительным числом, не равным 1 .

Графики для функций с a > 1 и a 1 будут выглядеть так:

  • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью):

График главной ветви косинуса и арккосинуса выглядит так:

График главной ветви арктангенса и тангенса:

График главной ветви арккотангенса и котангенса будет таким:

Если же вам требуется построить обратные ветви, отличные от главных, то обратную тригонометрическую функцию при этом мы сдвигаем вдоль оси O y на нужное число периодов. Так, если требуется обратная функция для ветви тангенса на π 2 ; 3 π 2 , то мы можем сдвинуть ее на величину π вдоль оси абсцисс. График будет представлять собой ветвь арктангенса, которая сдвинута на π вдоль оси ординат.

Это все свойства обратных функций, о которых мы хотели бы вам рассказать.

Как найти обратную функцию

Многие приложения в алгебре и исчислении зависят от знания того, как найти обратную функцию, и это тема данного руководства.

Прежде всего, вам нужно понять, что перед тем, как найти инверсию функции, вы должны убедиться, что такая инверсия существует.

Преимущество метода поиска обратного, который мы будем использовать, заключается в том, что мы найдем обратное и выясним, существует ли оно одновременно.

Готовый?? Тогда пристегнитесь.

Как узнать, есть ли у функции инверсия?

Технически функция имеет инверсию, когда она взаимно однозначна (инъективна) и сюръективна.

Однако решающим условием является то, что она должна быть взаимно однозначной, потому что функцию можно сделать сюръективной, ограничив ее диапазон своим собственным изображением.

Как узнать, что функция взаимно однозначна?

Что ж, есть как минимум пара способов. Один из них — алгебраический, а другой — графический (держу пари, я знаю, какой из них вы предпочитаете, да?)

Алгебраический путь

Для алгебраического подхода, чтобы функция \(f\) была взаимно однозначной, нам нужно доказать, что каждый раз, когда это \(f(x) = f(y)\), нам нужно иметь это \(x = y\).

Другими словами, нам нужно доказать, что

\[f(x) = f(y) \,\,\Rightarrow \,\, x = y\]

Графический способ

Для графического способа нам нужно использовать проверка горизонтальной линии : Для любой горизонтальной линии, которую мы рисуем, график функции не более одного раза пересекает эту горизонтальную линию.

Проходит тест горизонтальной линии

Не проходит тест горизонтальной линии

В поисках обратного

Чтобы найти обратную функцию для заданной функции \(f(x)\), необходимо решить уравнение.

Действительно, у вас есть уравнение \(f(x) = y\), вы берете \(y\) как заданное число, и вам нужно решить его для \(x\), и вам нужно убедиться, что решение УНИКАЛЬНО.

Это все. Легко, правда ??

Теперь о практических шагах:

Шаг 1: Для заданного \(y\) задайте уравнение:

и решите его для \(x\).

Шаг 2: Обязательно обратите внимание на то, для какого \(y\) существует действительно уникальное решение.

Шаг 3: Как только вы решите \(x\) в терминах \(y\), это выражение, которое зависит от \(y\), будет вашим \(f^<-1>(y)\).

Шаг 4: Измените имя переменной с \(y\) на \(x\), и у вас будет обратная функция \(f^<-1>(x)\).

ПРИМЕР 1

Найдите обратную функцию \(f(x) = \sqrt x\)

ОТВЕЧАТЬ:

Итак, мы берем \(y\) как данное, и нам нужно решить \(f(x) = y\), что в данном случае соответствует решению

Обратите внимание, что квадратный корень всегда неотрицателен, поэтому для решения нам понадобится \(y\ge 0\).

Применяя квадрат к обеим сторонам, получаем, что

\[\Rightarrow \,\, (\sqrt x)^2 = y^2\] \[\Rightarrow \,\, x = y^2\]

Итак, \(f^<-1>(y) = y^2\), переключая имя переменной, мы получаем обратную функцию:

ПРИМЕР 2

Найдите обратную функцию \(f(x) = \displaystyle \frac\) для \(x > -1\)

ОТВЕЧАТЬ:

Опять же, мы берем \(y\) как дано, и теперь нам нужно решить для \(x\) уравнение \(f(x) = y\). Итак, у нас есть

\[\displaystyle \frac = y\] \[\Rightarrow \,\, x = y(x+1)\] \[\Rightarrow \,\, x = yx + y\] \[\Rightarrow \,\, x — yx = y\] \[\Rightarrow \,\, x(1 — y) = y\] \[\Rightarrow \displaystyle \,\, x = \frac<1-y>\]

Итак, \(f^<-1>(y) = \displaystyle \frac<1-y>\), переключая имя переменной, мы получаем обратную функцию:

Подробнее о поиске обратной функции

Одним из важнейших свойств обратной функции \(f^<-1>(x)\) является то, что \(f(f^<-1>(x)) = x\).

Подумайте, о чем это говорит. Что-то вроде: «Функция, вычисленная в обратном порядке, дает вам идентичность».

Или, другими словами, вычисление инверсии через функцию похоже на бездействие с аргументом.

Или, как некоторые любят говорить: функция может каким-то образом отменить обратное.

Вы выбираете свою версию.

Как найти обратную квадратичную функцию? Ты можешь?

Собственно, ответ таков: это зависит от обстоятельств. Это потому, что если мы рассмотрим квадратичную функцию по всей реальной линии , то это не один к одному, поскольку он не проходит тест горизонтальной линии, как вы можете видеть на диаграмме ниже:

Не пройдя тест горизонтальной линии, мы можем увидеть, что для данного \(y\) существует более одного значения \(x\), так что \(f(x) = y\), поэтому мы не можем «решить» для \(x\), поскольку существует более одного \(x\).

НО, если вы ограничите домен и рассмотрите, скажем, только положительные числа, мы получим следующее:

который проходит проверку горизонтальной линии, и, следовательно, квадратичная функция обратима.

НРАВСТВЕННОСТЬ ИСТОРИИ: Чтобы проверить, является ли что-то обратимым, речь идет НЕ только о функции. Речь идет о функции И ее домен и диапазон .

Как быстро построить график обратных функций

Всегда существует требование оценки, является ли функция \(f(x)\) обратимой или нет (проверяя, является ли она взаимно однозначной). Но если предположить, что вы знаете, что это обратимо, есть простой способ найти график обратимости.

Сначала изобразите график данной функции \(f(x)\).

Затем нарисуйте линию под углом 45 градусов \(y = x\).

Чтобы построить график \(f^<-1>(x)\), все, что вам нужно сделать, это отразить график \(f(x)\) через линию \(y = x\) под углом 45 градусов, как зеркало.

См. Пример ниже с функциями \(f(x) = \sin x\) и \(f^<-1>(x) = \arcsin x\).

Другой способ увидеть это — использовать оригинал график и измените значение \(x\) на значение \(y\).

Есть ли способ сделать функцию обратной?

Да, это действительно возможно, но это происходит только для функции идентификации, то есть с \(f(x) = x\).

Алгебра

План урока:

Взаимно обратные функции

Напомним, что любая функция у = у(х) представляет собой некоторое правило, которое устанавливает соответствие между значениями х и значениями у. В частности, функция у = х 2 ставит в соответствие каждому действительному числу его квадрат. Приведем таблицу, содержащую значения этой функции для целых аргументов от – 2 до 2:

Но если есть соответствие между х и у, то должно существовать и обратное соответствие между у и х. Действительно, строки таблички можно «перевернуть» и она примет следующий вид:

Мы получили два взаимно обратных соответствия. Однако второе из них функцией не является, ведь функция должна ставить в соответствие своему аргументу только одно значение функции. Однако, судя по второй таблице, числу у = 1 соответствует сразу два х: х = – 1 и х = 1. В таком случае математики говорят, что исходная функция у = х 2 является необратимой.

Теперь изучим зависимость у = х 3 . Построим табличку и для неё:

Теперь «перевернем таблицу» и получим следующее:

Мы видим, что как каждому значению х соответствует единственное значение у, так и наоборот, каждому у соответствует единственное значение х. В математике для подобных соответствий используют понятие взаимно-однозначное соответствие.

Для лучшего понимания этого определения отвлечемся от чисел. Пусть в футбольном чемпионате играет несколько команд. Они образуют множество Х команд-участниц соревнования. За множество У примем отдельных футболистов, выступающих на турнире. Каждому игроку соответствует единственная команда, за которую он выступает, но обратное неверно – каждой команде соответствует несколько игроков. Значит, это пример соответствия, не являющегося взаимно-однозначным.

Пусть тренеры команд образуют множество Z. Каждый тренер тренирует лишь одну команду, и наоборот, каждую команду тренирует единственный тренер. Значит, между множествами X и Z есть взаимно-однозначное соответствие.

Вернемся к функциям. Если соответствие, которое задает функция у = у(х), является взаимно-однозначным, то каждому значению у будет соответствовать единственное значение х. Значит, существует некоторая функция х = х(у). Пары функций у = у(х) и х = х(у) называются взаимно обратными функциями.

Ещё раз скажем, что не для любой функции существует обратная функция, ведь не все они определяют взаимно-однозначное соответствие. Если всё же для у = у(х) есть обратная функция х = х(у), то у = у(х) называют обратимой функцией.

Покажем, какие функции являются обратными, на примере пары у = 4х + 12 и у = 0,25х – 3. Возьмем, например, значение х = 5 и подставим его в у = 4х + 12:

у = 4х + 12 = 4•5 + 12 = 32

Получили 32. Подставим это число в обратную функцию:

у = 0,25х – 3 = 0,25•32 – 3 = 8 – 3 = 5

Получили именно то число, которое первоначально подставили в первую функцию! Возьмем другое произвольное число, например, 10, и подставим его в у = 4х + 12:

у = 4•10 + 12 = 40 + 12 = 52

Полученный результат подставляем в у = 0,25х – 3:

у = 0,25•52 – 3 = 13 – 3 = 10

Снова получили исходное число! Выберете сами ещё несколько произвольных чисел и убедитесь, что и с ними будет происходить то же самое.

Посмотрим, как получить обратную функцию. Пусть дана зависимость

Это, по сути, выражение для вычисления у. Выразим из него х:

Получили зависимость х от у. Чтобы мы получили из нее обратную функцию, необходимо просто поменять местами буквы х и у:

Убедитесь самостоятельно на нескольких примерах, что полученная функция обратна функции у = 5х + 20.

Пример. Найдите функцию, обратную зависимости у = 1/(х + 7).

Решение. Умножим обе части равенства у = 1/(х + 7) на (х + 7):

Далее поделим обе части нау:

Перенесем семерку вправо и получим формулу для вычисления х:

Для получения обратной функции просто меняем х и у местами:

Предположим, у нас есть у= у(х), чей график нам известен, и необходимо построить график взаимно обратной функции. Как это сделать? Если одна точка на координатной прямой имеет координаты (a; b) и принадлежит функции у = у(х), то, обратной функции должна принадлежать точка (b; a):

Эти точки симметричны относительно прямой у = х:

Поэтому для построения графика обратной функции достаточно симметрично отобразить его относительно прямой у = х.

С помощью этого правила построим график функции, обратной у = х 3 :

Практика показывает, что не все школьники (да и взрослые тоже) понимают, что означает симметричность относительно прямой у = х, ведь эта прямая наклонена. Здесь требуется довольно высокий уровень пространственного мышления. Куда проще понять симметрию относительно вертикальной или горизонтальной линии. Поэтому мы покажем ещё один способ построения обратных функций, который состоит из двух этапов.

Он заключается в том, что сначала график отображают симметрично относительно вертикальной оси Оу:

На втором этапе полученное отображение поворачивают по часовой стрелке относительно начала координат:

Заметим важное правило. При построении обратной функции области определения и области значений меняются местами. Действительно, если какое-то число входит в область значения функции, то это значит, что его можно подставить в обратную функцию. Но это в свою очередь означает, что она входит в область определения обратной функции. Проиллюстрируем это правило картинкой:

До сих пор мы рассматривали способы построения обратных функций, но ведь в самом начале урока говорилось о том, что обратная функция существует не всегда. Действительно, попытаемся построить обратную функцию для у = х 2 :

Получилась та же парабола, но «лежащая на боку». Является ли она графиком функции? Нет. На рисунке проведена вертикальная линия, которая пересевает график в двух точках. Это значит, что одному значению х (в данном случае х = 5) соответствует сразу два значения у. Но подобное соответствие не является функцией. Это значит, что у = х 2 – необратимая функция.

Есть ли какой-то признак, позволяющий быстро сказать, является ли функция обратимой? Оказывается, есть. Если функция строго монотонна (то есть либо только возрастает, либо только убывает), то это гарантирует, что она ещё и обратима. Покажем это с помощью рисунков. Известно, что каждому значению строго монотонной функции соответствует лишь один аргумент. С точки зрения геометрии это означает, что любая горизонтальная линия пересекает монотонную функцию не более чем в одной точке:

К слову, это свойство мы использовали для решения некоторых уравнений. Теперь отобразим график симметрично прямой у = х, причем также отобразим и горизонтальные линии:

Горизонтальные линии превратились в вертикальные, при этом они всё также пересекают график не более чем в одной точке. Но это как раз и означает, что график задает функцию, а не какое-то другое соответствие. Отсюда делаем вывод – любая строго монотонная функция обратима.

Снова вернемся к функции у = х 2 . Мы уже показали, что она необратима. Но теперь наложим на нее дополнительное ограничение: х⩾0. Тогда от графика параболы останется только одна ветвь. Для нее уже можно построить обратную функцию:

Можно сделать вывод – обратимость функции зависит не только от самого вида функции, но и от того, на какой области определения ее рассматривают.

Кубический корень

Ранее мы изучили понятие квадратного корня. Напомним, что извлечение квадратного корня – это операция, обратная возведению в квадрат. Другими словами, функция

является обратной для у = х 2 .

Встает вопрос – а можно ли придумать функцию, обратную возведению в куб? Конечно же да, ведь мы убедились в том, что функция у = х 3 обратима. Называют же функцию, обратную у = х 3 , кубическим корнем.

Можно дать и другое определение, не использующее понятие функции:

Например, мы знаем, что число 5 в кубе равно 125:

Это значит, что кубический корень из 125 равен 5.

Для обозначения кубического корня используют тот же знак радикала, что и для квадратного корня. Чтобы их отличать друг от друга, в случае с кубическим корнем перед знаком радикала ставят тройку:

Заметим важное отличие кубического и квадратного корня. Мы привыкли, что под знаком радикала не должно стоять отрицательное число. Но кубический корень из отрицательного числа извлечь можно. Например, мы знаем, что (– 6) 3 = – 216. Отсюда следует, что

График кубического корня можно получить, просто построив функцию, обратную у = х 3 :

Корни n-ой степени

Аналогично кубическому корню можно ввести понятие и корня произвольной n-ой степени.

Для обозначения корня n-ой степени используется знак радикала, перед которым стоит число n. Приведем пример. Мы знаем, что 2 5 = 32. Это значит, что корень 5-ой степени из 32 равен 2:

Мы помним, что все степенные функции вида у = х n схожи друг с другом и при этом могут быть разбиты на два класса, в зависимости от четности или нечетности показателя степени n. Если n– четное число (2, 4, 6…), то график будет похож на параболу у = х 2 , просто он будет чуть сильнее «прижат» к оси Ох вблизи точки О (0;0), но вместе с тем он будет и быстрее возрастать:

Если же показателем n является нечетное число, то график у = х n будет схож с графиком у = х 3 :

Мы видим, что при нечетном показателе получается строго монотонная (возрастающая) функция. Следовательно, она обратима. Функция, обратная функции у = х n , и будет корнем степени n.

Если n нечетно, то корень можно извлечь и из отрицательного числа. Так, известно, что (– 3) 7 = – 2187. Это значит, что корень седьмой степени из (– 2187) равен (– 3):

Очевидно, что корень получится отрицательным, если под ним стоит отрицательное число. Если же подкоренное выражение положительно, то и сам корень положителен. Более того, можно заметить, что корень из отрицательного числа равен корню из противоположенного ему положительного числа, взятого со знаком минус:

В общем случае графики всех корней нечетных степеней будут похожи на график кубического корня:

Несколько сложнее дело обстоит в том случае, если показатель n является четным. Мы уже выяснили, что у = х 2 – это необратимая функция. Аналогично и любая другая степенная функция у = х n необратима. Однако у = х 2 обратима, если наложить дополнительное ограничение: х ≥ 0. Аналогично, при использовании такого же ограничения, обратимой будет и любая функция у = х n , где n – четное число. График такой функции будет похож на квадратный корень:

При четном значении n корень n-ой степени нельзя извлечь из отрицательного числа. Действительно, попробуем возвести в четную степень положительное число:

Получили другое положительное число. Теперь попробуем возвести в четную степень отрицательное число:

(– 5) 4 = (– 5)•(– 5)•(– 5)•(– 5) = 625

Результат снова положительный! Минусы у отрицательных чисел «сократились» друг с другом, и получилось положительное произведение. Но раз при возведении в четную степень всегда получается неотрицательное число, значит, и под четным корнем должно также стоять неотрицательное число. Поэтому подкоренное выражение не может быть отрицательным.

Арифметические корни n-ой степени

Мы видим, что складывается не очень удобная для математиков ситуация: корни n-ой степени из отрицательного числа можно извлечь, если n – нечетное число, но при четном n такая операция уже недопустима. Это порождает много проблем при работе с корнями. Для устранения этих проблем вводится понятие арифметического корня степени n. Его особенность в том, что он всегда извлекается из неотрицательного числа и сам принимает значения, не меньшие нуля.

Заметим, что корень нечетной степени из отрицательного числа всегда можно выразить с помощью арифметического корня, просто вынеся знак минус из-под корня:

Поэтому арифметических корней вполне хватает для работы в любых ситуациях.

Определение корня можно записать в более формализованном виде:

Проиллюстрируем использование этой формулы:

Свойства корня n-ой степени

Далее рассмотрим некоторые свойства корней степени n, помогающие вычислять их значения. Сразу скажем, что они во многом идентичны свойствам квадратного корня.

Для доказательства этого свойства правую часть в n-ую степень:

Приведем примеры использования этого свойства:

Отсюда следует, что множители можно вносить и выносить из-под знака корня:

Следующее свойство помогает извлекать корни из дробей.

Доказывается это свойство так же, как и первое. Возведем в n-ую степень правую часть формулы:

Продемонстрируем применение доказанного тождества:

Заметим, что если под корнем находится степень какого-то числа, то ее вынести из-под радикала:

Доказать это можно, разложив число a m в произведение:

Всего справа стоит m множителей. Теперь извлечем корень степени n:

Справа всё те же m множителей, а потому

Таким образом, получаем, что

Покажем несколько примеров использования этого правила:

Далее посмотрим, как извлекать корень из другого корня.

Для доказательства возведем корень в левой части формулы в степень mn:

По определению корня получаем, что

Проиллюстрируем использование данного правила:

Последнее свойство, которое нам осталось изучить, называют основным свойством корня.

Доказательство записывается всего в одну строчку:

Степени в корне и под ним можно «сокращать»:

Сравнение корней

Естественно, что большинство корней – это не целые, а иррациональные числа, которые довольно сложно вычислять. Тем не менее есть несколько правил, которые помогают оценивать их значение. Из графиков корней видно, что все они являются возрастающими функциями. Поэтому, если необходимо сравнить два корня одной степени, достаточно сравнить их подкоренные выражения. Тот корень, у которого под корнем стоит большее число, и будет больше

В частности, справедливы неравенства:

В случае, если у корней различаются степени, следует постараться преобразовать их так, чтобы степени всё же совпали.

Пример. Сравните числа

Решение. Преобразуем первое число, чтобы у нас получился корень шестой степени:

Так как 121 > 119, то и

Пример. Сравните числа

Решение. Сначала избавимся от вложенных корней:

Получили два кубических корня. Меньше тот из них, у которого под радикалом меньшее число:

Пример. Сравните корни

Решение. Имеем корни 7-ой и 4-ой степени. К какой одинаковой степени можно привести оба корня? Это число 28, ведь оно представляет собой произведение 7•4:


источники:

http://mathcracker.com/ru/%D0%BD%D0%B0%D0%B9%D1%82%D0%B8-%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%BD%D1%83%D1%8E-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8E

http://100urokov.ru/predmety/urok-9-obratnye-funkcii