Найти общее решение устойчивого диф уравнения операторным методом

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Применения операционного исчисления

Решение задачи Коши для ОДУ с постоянными коэффициентами

Пример 1.

Решить однородное дифференциальное уравнение с постоянными коэффициентами. \begin &x»’+2x»+5x’=0,\\ &x(0)=-1, \,\, x'(0)=2, \,\, x»(0)=0. \end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: \begin &x(t) \risingdotseq X(p),\\ &x'(t) \risingdotseq pX(p)-x(0)=pX(p)+1,\\ &x»(t) \risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p)+p-2,\\ &x»'(t) \risingdotseq p^3X(p)-p^2x(0)-px'(0)-x»(0)=p^3X(p)+p^2-2p-0. \end Справа стоит $0$, изображение для него тоже $0$.

Запишем уравнение с изображениями (операторное уравнение). Оно уже будет алгебраическим, а не дифференциальным: \begin p^3X(p)+p^2-2p+2(p^2X(p)+p-2)+5(pX(p)+1)=0. \end И найдем из него неизвестное $X(p)$: \begin X(p)=-\frac. \end Используя теоремы, приемы, таблицы операционного исчисления получим оригинал: \begin X(p) \risingdotseq x(t)=-\displaystyle\frac15-\displaystyle\frac45 e^<-t>\mbox\,2t+\displaystyle\frac35e^<-t>\mbox\,2t. \end

Пример 2.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»-2x’-3x=e^<3t>,\\ x(0)=x'(0)=0. \end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: \begin &x(t) \risingdotseq X(p),\\ &x'(t) \risingdotseq pX(p)-x(0)=pX(p),\\ &x»(t) \risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p), \end Справа стоит $e^<3t>$, изображение равно $\displaystyle\frac<1>$.

Запишем операторное уравнение: \begin (p^2-2p-3)X(p)=\frac<1>. \end Находим $X(p)$: \begin X(p)=\frac<1><(p-3)^2(p+1)>. \end Используя, например, вторую теорему разложения, получим оригинал: \begin X(p) \risingdotseq \displaystyle\frac14\,te^<3t>-\displaystyle\frac<1><16>\,e^<3t>+\displaystyle\frac<1><16>\,e^<-t>. \end

Пример 3.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»+3x’=\mbox\,2t,\\ x(0)=2, \,\, x'(0)=0. \end

Пример 4.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»+x’=e^t,\\ x(1)=1, \,\, x'(1)=2. \end Так как начальные условия даны не при $t=0$, сразу применить теорему о дифференцировании оригинала мы не можем. Поставим вспомогательную задачу для функции $y(t)=x(t+1)$: \begin y»+y’=e^,\\ y(0)=1, \,\, y'(0)=2. \end Записываем операторное уравнение \begin (p^2Y(p)-p-2)+(pY(p)-1)=\displaystyle\frac. \end

Решаем полученное уравение: \begin Y(p)=\displaystyle\frac<(p-1)(p^2+p)>+\displaystyle\frac. \end \begin y(t)=\displaystyle\frac12e^+\left(\displaystyle\frac<2>-2\right)e^<-t>+(3-e). \end Со сдвигом на $1$ находим решение исходной задачи: \begin x(t)=y(t-1)=\displaystyle\frac12e^+\left(\displaystyle\frac<2>-2\right)e^<-t+1>+(3-e). \end

Решение задачи Коши для систем линейных ДУ

Пример 5.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’ = 2x+8, \\ &y’ = x+4y+1, \\ &x(0)=1,\, y(0)=0. \\ \end \right. \end

Запишем изображения: \begin \begin x(t) \risingdotseq X(p), & x'(t) \risingdotseq p\,X(p)-1, \\ y(t) \risingdotseq Y(p), & y'(t) \risingdotseq p\,Y(p). \end \end \begin 8 \risingdotseq \displaystyle\frac<8>

, \,\, 1 \risingdotseq \displaystyle\frac<1>

. \end

Операторная система уравнений принимает вид: \begin \left\ < \beginpX(p)-1 &= 2X(p)+\displaystyle\frac<8>

, \\ pY(p) &= X(p)+4Y(p)+\displaystyle\frac<1>

.\\ \end \right. \end

Решаем систему, находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac\risingdotseq x(t)=-4+5e^<2t>. \end \begin Y(p)=\displaystyle\frac<2p+6>\risingdotseq y(t)=\displaystyle\frac34-\displaystyle\frac52\,e^<2t>+\displaystyle\frac74\,e^<4t>. \end

Пример 6.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’ = 2x+8y, \\ &y’ = x+4y+1, \\ &x(0)=1,\, y(0)=0.\\ \end \right. \end

\begin \begin x(t) \risingdotseq X(p), & x'(t) \risingdotseq p\,X(p)-1, \\ y(t) \risingdotseq Y(p), & y'(t) \risingdotseq p\,Y(p),\\ 1 \risingdotseq \displaystyle\frac<1>

. &\\ \end \end

Операторная система уравнений принимает вид: \begin \left\ < \beginpX(p)-1 &= 2X(p)+8Y(p), \\ pY(p) &= X(p)+4Y(p)+\displaystyle\frac<1>

.\\ \end \right. \end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac\risingdotseq x(t)=\frac49-\frac43\,t+\frac59\,e^<6t>. \end \begin Y(p)=\displaystyle\frac<2(p-1)>\risingdotseq y(t)=-\displaystyle\frac<5><18>+\displaystyle\frac13\,t+\displaystyle\frac<5><18>\,e^<6t>. \end

Пример 7.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’-2x-4y = \mbox\, t, \\ &y’+x+2y = \mbox\,t, \\ &x(0)=0,\, y(0)=0.\\ \end \right. \end

Операторная система уравнений принимает вид: \begin \left\ < \begin(p-2)X(p)-4Y(p) &= \frac

, \\ X(p)+(p+2)Y(p) &= \frac<1>.\\ \end \right. \end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac<2>

+\displaystyle\frac<4>-\displaystyle\frac<2p+3>\risingdotseq x(t)=2+4t-2\,\mbox\,t-3\,\mbox\,t. \end \begin Y(p)=-\displaystyle\frac<2>+\displaystyle\frac<2>\risingdotseq y(t)=-2t+2\,\mbox\,t. \end

Решение ОДУ с помощью интеграла Дюамеля

Введем обозначения:
Уравнение: $x^<(n)>(t)+a_1\,x^<(n-1)>(t)+\ldots+a_n\,x(t)=f(t)$.
Начальные условия: $x(0)=x'(0)=\ldots=x^<(n)>=0$.
Неизвестная функция $x(t)$, имеющая изображение $X(p)$.
Сложная функция в правой части $f(t)$, имеющая изображение $F(p)$.

Запишем алгоритм решения.
1. Решается вспомогательное уравнение $$ y^<(n)>(t)+a_1\,y^<(n-1)>(t)+\ldots+a_n\,y(t)=1.$$ С учетом начальных условий левая и правые части уравнений будут иметь изображения: \begin \begin y(t) & \risingdotseq Y(p),\\ y'(t) & \risingdotseq p\,Y(p),\\ y»(t)& \risingdotseq p^2Y(p),\\ &\cdots\\ y^<(n)>(t)& \risingdotseq p^nY(p). \end \end Вспомогательное операторное уравнение запишем в виде: \begin Y(p)\cdot h(p) = \frac<1>

,\\ h(p)=p^n+a_1p^+\ldots+a_n. \end $$Y(p) \risingdotseq y(t).$$

2. Решается исходное уравнение. Левая часть уравнения совпадает с левой частью вспомогательного, поэтому операторное уравнение записывается так: $$ X(p)\cdot h(p) = F(p),$$ при этом $h(p)$, используя решение вспомогательного уравнения, можно записать в виде \begin h(p)=\frac<1>. \end Тогда $$ X(p) = F(p)\,pY(p).$$ Для нахождения $x(t)$ необходимо найти оригинал для $pY(p)F(p)$, то есть вычислить интеграл из формулы Дюамеля: $$ p F(p) Y(p) \risingdotseq y(0)\cdot f(t)+\int\limits_0^t f(\tau)\,y'(t-\tau)\,d\tau,$$ где $y(t)$ — уже найденное решение вспомогательного уравнения.

Пример 8.

Решить задачу Коши с помощью интеграла Дюамеля. \begin x»+2x’=\frac<1><1+e^<2t>>, \,\, x(0)=0, \,\, x'(0)=0. \end Решаем через интеграл Дюамеля в два этапа, как было описано выше.

2. Исходное уравнение в операторном виде: \begin (p^2+2p)X(p)=F(p). \end Правая часть этого уравнения такая же, как и для вспомогательного. Левую часть $\frac<1><1+e^<2t>>$ обозначим $f(t)$, ее изображение $F(p)$. Тогда \begin X(p)=\frac. \end Решая вспомогательное уравнение, мы находили: \begin (p^2+2p)Y(p)=\frac<1>

\,\, \Rightarrow \,\, p^2+2p=\frac<1>. \end Тогда \begin X(p)=\frac<\frac<1>>=pF(p)Y(p). \end

Теперь по формуле Дюамеля получаем: \begin X(p)=p F(p) Y(p) \risingdotseq x(t)=y(0)\cdot f(t)+\int\limits_0^t f(\tau)\,y'(t-\tau)\,d\tau, \end где $y(t)$ — уже найденное решение вспомогательного уравнения: \begin \begin & y(t)=-\frac14+\frac12t+\frac14 e^<-2t>,\\ & y(0)=0,\\ & y'(t-\tau)=\frac12-\frac12e^<-2(t-\tau)>. \end \end

Решение задачи Коши с правой частью, содержащей функцию Хэвисайда

Пример 9

Решить задачу Коши, когда правая часть дифференциального уравнения содержит составную функцию (выражаемую через функцию Хэвисайда). \begin \left\ < \begin&x»+x=\eta(t)-\eta(t-2), \\ &x(0)=0,\\ &x'(0)=0. \end \right. \end

Запишем изображения для левой и правой частей уравнения: \begin &x»+x \risingdotseq p^2\,X(p)+X(p),\\ &\eta(t)-\eta(t-2) \risingdotseq \frac<1>

-\frac>

. \end Для правой части, содержащей функцию Хэвисайда, воспользовались теоремой запаздывания.

Находим изображение для $\displaystyle\frac<1>$ с помощью теоремы об интегрировании оригинала: \begin &\frac<1>\risingdotseq \mbox\,t \,\, \Rightarrow\\ &\frac<1>\risingdotseq \int\limits_0^t\,\mbox\,\tau\,d\tau=-\mbox\,t+1. \end Тогда изображение для $\displaystyle\frac>$ по теореме запаздывания будет равно: \begin \frac>\risingdotseq (-\mbox\,(t-2)+1)\eta(t-2). \end

Решение заданного уравнения: \begin x(t)= (1-\mbox\,t)\eta(t)-(1-\mbox\,(t-2))\eta(t-2). \end

Пример 10

Решить задачу Коши, когда правая часть дифференциального уравнения задана графически (и выражается через функцию Хэвисайда). \begin \left\ < \begin&x»+4x=f(t). \\ &x(0)=0,\\ &x'(0)=0. \end \right. \end

Запишем аналитическое выражение для $f(t)$ с помощью функции Хэвисайда и найдем ее изображение: \begin &f(t)=2t\eta(t)-4(t-1)\eta(t-1)+2(t-2)\eta(t-2),\\ &F(p)=\frac<2>(1-2e^<-p>+e^<-2p>). \end Операторное уравнение имеет вид: \begin &X(p)(p^2+4)=\frac<2>(1-2e^<-p>+e^<-2p>)\,\, \Rightarrow\\ &X(p)=\frac<2>(1-2e^<-p>+e^<-2p>). \end

Для первого слагаемого найдем оригинал, разложив дробь на сумму простейших: \begin \frac<2>=\frac<1><2p^2>-\frac<2> <4(p^2+4)>\risingdotseq \frac12t-\frac14\,\mbox\,2t. \end Для остальных слагаемых воспользуемся теоремой запаздывания: \begin X(p)\risingdotseq x(t)= \frac12\left(t-\frac12\,\mbox\,2t\right)\eta(t)-\\ -\left((t-1)-\frac12\,\mbox\,2(t-1)\right)\eta(t-1)+\\ +\frac12\left((t-2)-\frac12\,\mbox\,2(t-2)\right)\eta(t-2). \end

Решение задачи Коши с периодической правой частью

Периодическую правую часть тоже очень удобно записывать с помощью функции Хэвисайда.

Пусть $f(t)$ — периодическая с периодом $T$ функция-оригинал. Обозначим через $f_0(t)$ функцию: \begin f_0(t)=\begin f(t),& 0 oplaplace/seminar5_2.txt · Последние изменения: 2021/05/28 18:23 — nvr

Практика (Стась) 01.04. Решение дифференциальных уравнений операционным методом

НазваниеРешение дифференциальных уравнений операционным методом
Дата16.06.2020
Размер81.17 Kb.
Формат файла
Имя файлаПрактика (Стась) 01.04.docx
ТипРешение
#130700
Подборка по базе: ВЫЧИСЛЕНИЕ МЕТОДОМ МОНТЕ-КАРЛО КОЛИЧЕСТВА ПЕРВИЧНЫХ ДЕФЕКТОВ В К, Практическое занятие 6 РЕШЕНИЕ.docx, Задачи по римскому праву с решением.doc, Решение системы линейных уравнений.docx, Итоговое задание решение.docx, 15 урок Решение задач.pptx, Исследование интегральных характеристик электростатического поля, Пример выполнения решения уравнений командой FIND.rtf, 1 Решение. Конкретная ситуация ФОРД.doc, Иван царевич решение задачи.docx

Решение дифференциальных уравнений операционным методом

Постановка задачи
Рассмотрим задачу, наиболее часто встречающуюся в теории дифференциальных уравнений, — задачу Коши для линейных дифференциальных уравнений и систем.

а) линейное обыкновенное дифференциальное уравнение с постоянными коэффициентами:

где — порядок дифференциального уравнения; — заданные коэффициенты; — заданная функция;

б) начальные условия:

(5.25)

Требуется найти решение дифференциального уравнения, которое удовлетворяет начальным условиям (решить задачу Коши (5.24),(5.25)).

Замечание 5.6. Переменная в задачах анализа динамических систем имеет смысл времени. Поэтому будем использовать следующие обозначения производных:

а) система линейных обыкновенных дифференциальных уравнений первого порядка с постоянными коэффициентами, записанная в нормальной форме:

(5.26)

(

где — вектор неизвестных; матрица коэффициентов; — заданная вектор-функция;

б) начальные условия (где — вектор начальных значений):

(5.27)

(

Требуется найти решение системы, которое удовлетворяет начальным условиям (решение задачи Коши (5.26),(5.27)).

Во многих учебниках изложены классические аналитические и численные методы решения задачи Коши. Здесь будем предполагать, что заданная функция и искомая функция принадлежат классу оригиналов. Для решения задач (5.24),(5.25) и (5.26),(5.27) можно применить аппарат операционного исчисления метода решения задач, суть которого состоит в следующем.

Поставленная в классе оригиналов задача переводится с помощью преобразования Лапласа в задачу для изображений. Эта задача решается, и определяете изображение искомой функции. Затем применяется обратное преобразование Лапласа и находится оригинал — решение поставленной задачи.

Алгоритм решения задачи Коши операционным методом
1. Применить преобразование Лапласа: от известных и неизвестных функций перейти к их изображениям, записать уравнение (систему) в изображениях, соответствующее решаемой задаче Коши.

2. Решить полученное уравнение (систему): найти изображение искомого решения.

3. Применить обратное преобразование Лапласа: найти оригинал для полученного в п.2 изображения.

1. Преимущество операционного метода заключается в том, что при его применении функции из пространства оригиналов и производимые над ними операции заменяются функциями и операциями в пространстве изображений, которые оказываются более простыми. Так, вместо дифференциальных уравнений решаются алгебраические уравнения.

2. Начальные условия при записи уравнений в изображениях учитываются автоматически, и нет необходимости решать систему для нахождения произвольных постоянных, как это делается при применении классического метода.

3. Операционное исчисление позволяет найти не только частное, но и общее решение уравнения (5.24). Для этого достаточно положить . При нахождении общего решения системы (5.26) следует принять .

4. Операционное исчисление можно применять для широкого класса кусочно-непрерывных функций и функций, заданных графически; для решения уравнений с переменными коэффициентами, уравнений в частных производных, интегральных и интегро-дифференциальных уравнений; для вычисления несобственных интегралов и суммирования рядов.

5. При решении уравнения (системы) для изображений не следует приводить дроби к общему знаменателю, так как следующий этап — нахождение оригинала — связан с представлением дробей в виде суммы

Как решить дифференциальное уравнение методом операционного исчисления?
На данном уроке будет подробно разобрана типовая и широко распространенная задача комплексного анализа – нахождение частного решения ДУ 2-го порядка с постоянными коэффициентами методом операционного исчисления.

Основная суть операционного исчисления состоит в следующем: функция действительной переменной с помощью преобразования Лапласа отображается в функцию комплексной переменной :

Терминология и обозначения:функция называется оригиналом; функция называется изображением;заглавной буквой обозначается преобразование Лапласа.

Действительную функцию (оригинал) по определённым правилам нужно превратить в комплексную функцию (изображение). Стрелочка обозначает именно это превращение. А сами «определенные правила» и являются преобразованием Лапласа, которое рассмотрим лишь формально, чего для решения задач будет вполне достаточно.

Осуществимо и обратное преобразование Лапласа, когда изображение превращается в оригинал:

В ряде задач высшей математики бывает очень выгодно перейти от оригиналов к изображениям , поскольку в этом случае решение задания значительно упрощается.

Найти частное решение неоднородного уравнения второго порядка с постоянными коэффициентами при заданных начальных условиях .

Примечание: иногда дифференциальное уравнение может быть и однородным: , для него в вышеизложенной формулировке также применим метод операционного исчисления. Однако в практических примерах однородное ДУ 2-го порядка встречается крайне редко, и далее речь пойдёт о неоднородных уравнениях.

Как известно, неоднородное дифференциальное уравнение 2-го порядка можно решить методом подбора частного решения по виду правой части либо методом вариации произвольных постоянных.

И сейчас будет разобран третий способ – решение ДУ с помощью операционного исчисления. Ещё раз подчеркиваю то обстоятельство, что речь идёт о нахождении частного решения, кроме того, начальные условия строго имеют вид («иксы» равны нулям).

К слову, об «иксах». Уравнение можно переписать в следующем виде: , где «икс» – независимая переменная, а «игрек» – функция.

В рассматриваемой задаче чаще всего используются другие буквы:

То есть роль независимой переменной играет переменная «тэ» (вместо «икса»), а роль функции играет переменная «икс» (вместо «игрека»)

Понимаю, неудобно конечно, но лучше придерживаться обозначений, которые встречаются в большинстве задачников и методичек.

Итак, наша задача с другими буквами записывается следующим образом:

Найти частное решение неоднородного уравнения второго порядка с постоянными коэффициентами при заданных начальных условиях .

Смысл задания нисколько не изменился, изменились только буквы.

Как решить данную задачу методом операционного исчисления?

Прежде всего, потребуется таблица оригиналов и изображений. Это ключевой инструмент решения, и без неё не обойтись. Поэтому, по возможности, постарайтесь распечатать указанный справочный материал. Сразу же поясню, что обозначает буква «пэ»: комплексную переменную (вместо привычного «зет»). Хотя для решения задач этот факт не имеет особого значения, «пэ» так «пэ».

С помощью таблицы оригиналы и необходимо превратить в некоторые изображения. Далее следует ряд типовых действий, и используется обратное преобразование Лапласа (тоже есть в таблице). Таким образом, будет найдено искомое частное решение.

Все задачи, что приятно, решаются по достаточно жесткому алгоритму.

С помощью операционного исчисления найти частное решение дифференциального уравнения при заданных начальных условиях. , ,

Решение: На первом шаге перейдем от оригиналов к соответствующим изображениям. Используем левую сторону таблицы оригиналов и изображений.

Сначала разбираемся с левой частью исходного уравнения. Для преобразования Лапласа справедливы правила линейности, поэтому все константы игнорируем и по отдельности работаем с функцией и её производными.

По табличной формуле №1 превращаем функцию:

По формуле №2 , учитывая начальное условие , превращаем производную:

По формуле №3 , учитывая начальные условия , превращаем вторую производную:

Не путаемся в знаках!

Признаюсь, правильнее говорить не «формулы», а «преобразования», но для простоты время от времени буду называть начинку таблицы формулами.

Теперь разбираемся с правой частью, в которой находится многочлен . В силу того же правила линейности преобразования Лапласа, с каждым слагаемым работаем отдельно.

Смотрим на первое слагаемое: – это независимая переменная «тэ», умноженная на константу. Константу игнорируем и, используя пункт №4 таблицы, выполняем преобразование:

Смотрим на второе слагаемое: –5. Когда константа находится одна-одинёшенька, то пропускать её уже нельзя. С одиночной константой поступают так: для наглядности её можно представить в виде произведения: , а к единице применить преобразование:

Таким образом, для всех элементов (оригиналов) дифференциального уравнения с помощью таблицы найдены соответствующие изображения:

Подставим найденные изображения в исходное уравнение :

Дальнейшая задача состоит в том, чтобы выразить операторное решение через всё остальное, а именно – через одну дробь. При этом целесообразно придерживаться следующего порядка действий:

Для начала раскрываем скобки в левой части:

Приводим подобные слагаемые в левой части (если они есть). В данном случае складываем числа –2 и –3. Чайникам настоятельно рекомендую не пропускать данный этап:

Слева оставляем слагаемые, в которых присутствует , остальные слагаемые переносим направо со сменой знака:

В левой части выносим за скобки операторное решение , в правой части приводим выражение к общему знаменателю:

Многочлен слева следует разложить на множители (если это возможно). Решаем квадратное уравнение:

Таким образом:

Сбрасываем в знаменатель правой части:

Цель достигнута – операторное решение выражено через одну дробь.

Действие второе. Используя метод неопределенных коэффициентов, операторное решение уравнения следует разложить в сумму элементарных дробей:

Приравняем коэффициенты при соответствующих степенях и решим систему:

Если возникли затруднения с методом неопределенных коэффициентов, пожалуйста, наверстайте упущенное в статьях Интегрирование дробно-рациональной функции и Как решить систему уравнений? Это очень важно, поскольку разложение на дроби, по существу, самая важная часть задачи.

Итак, коэффициенты найдены: , и операторное решение предстаёт перед нами в разобранном виде: Обратите внимание, что константы записаны не в числителях дробей. Такая форма записи выгоднее, чем . А выгоднее, потому что финальное действие пройдёт без путаницы и ошибок:

Заключительный этап задачи состоит в том, чтобы с помощью обратного преобразования Лапласа перейти от изображений к соответствующим оригиналам. Используем правый столбец таблицы оригиналов и изображений.

Перейдем от изображений к соответствующим оригиналам:

Возможно, не всем понятно преобразование . Здесь использована формула пункта №5 таблицы: . Если подробнее: . Собственно, для похожих случаев формулу можно модифицировать: . Да и все табличные формулы пункта №5 очень легко переписать аналогичным образом.

После обратного перехода искомое частное решение ДУ получается:

Было:

Стало:

Ответ: частное решение:

При наличии времени всегда желательно выполнять проверку. Проверка выполняется по стандартной схеме, Неоднородные дифференциальные уравнения 2-го порядка . Повторим:

Проверим выполнение начального условия : – выполнено.

Найдём первую производную:

Проверим выполнение второго начального условия : – выполнено.

Найдём вторую производную:

Подставим , и в левую часть исходного уравнения : .

Получена правая часть исходного уравнения.

Вывод: задание выполнено правильно.

Небольшой пример для самостоятельного решения:

С помощью операционного исчисления найти частное решение дифференциального уравнения при заданных начальных условиях.
Пример 2

Статья на тему: «Операционный метод решения линейных дифференциальных уравнений и их систем»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Операционный метод решения линейных дифференциальных уравнений и их систем

Операционный метод приобрел большое значение при решении линейных дифференциальных уравнений с постоянными коэффициентами. Эффективность применения операционного исчисления при решении линейных обыкновенных дифференциальных уравнений состоит в удобстве и простоте вычислений. Прежде всего это относится к решению систем таких уравнений [4, с. 131].

Рассмотрим обыкновенное дифференциальное уравнение n-го порядка с постоянными коэффициентами

(1)

где коэффициенты -постоянные величины, при начальных условиях

x(0)= , (0) , . , (0)= (2)

где — заданные числа [3, с. 126].

Операционный метод решения состоит в том, что мы считаем как искомую функцию x(t), так и правую часть f(t) оригиналами и переходим от уравнения (1) , связывающего оригиналы, к уравнению, связывающему их изображения X(p) и F(p), тогда x(t) X(p) , а f(t) F(p) . Воспользуемся теоремой о дифференцировании оригинала:

,

,

Применяя свойство линейности получаем вместо уравнения (1) алгебраическое соотношение, которое назовем изображением, или операторным уравнением:

+ +. + ( )+ [2, с. 127—128]

В результате мы получили уже не дифференциальное, а алгебраическое уравнение относительно неизвестного изображения X(p).

где ,

-алгебраические многочлены от p степени n и n-1 соответственно [1, с. 264].

Из последнего уравнения находим

(3)

Полученное равенство называют операторным решением дифференциального уравнения (1). Остается по полученному изображению X(p) найти оригинал x(t) , применяя для этого соответствующие правила операционного исчисления. Найденный оригинал x(t) будет являться частным решением дифференциального уравнения (1) [3, с. 128].

Пример: найдем решение дифференциального уравнения операционным методом при условиях

=

Подставим эти выражения в дифференциальное уравнение, получим операторное уравнение: . Отсюда X(p)=

Для нахождения оригинала разложим дробь на простейшие

A(p+1)+B(p-3)(p+1)+C =1

Ap+A+B -2Bp-3B+C -6Cp+9 С =1

Составим систему уравнений:

Решив ее, получаем

Итак X(p)= , откуда

x(t)= — решение данного дифференциального уравнения.

Системы линейных дифференциальных уравнений с постоянными коэффициентами можно решать операционными методами совершенно так же, как и отдельные уравнения; все отличие заключается лишь в том, что вместо одного изображающего уравнения приходим к системе таких уравнений, причем система эта в отношении изображений искомых функций будет линейно алгебраической. При этом никаких предварительных преобразований исходной системы дифференциальных уравнений производить не требуется [3, с. 134].

Метод решения таких систем покажем на примере.

Пример: решить систему дифференциальных уравнений

при начальных условиях x(0)=2 , y(0)=0.

Подставим эти выражения в систему дифференциальных уравнений, система операторных уравнений принимает вид:

Решая эту систему уже алгебраических уравнений , находим:

X(p)= ,

Y(p)=

Раскладывая найденные изображения на простые дроби находим:

X(p)= ,

Y(p)= .

Переходя от изображений к оригиналам, получаем искомые решения:

x(t)=

y(t)= .

Таким образом операционный метод позволяет в ряде случаев значительно упростить процедуру нахождения решения линейных дифференциальных уравнений и их систем.

1.Араманович И.Г., Лунц Г.Л., Эльсгольц Л.Э. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. -М., Главная редакция физико-математической литературы, 1968 г., — стр. 416. — Избранные главы высшей математики для инженеров и студентов втузов. — 263—268 с.

2.Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. М.: Физматгиз, 1961. — 127—132 с.

3.Шостак Р.Я. Операционное исчисление. Краткий курс. Изд. второе, доп.Учебное пособие для вузов М. «Высшая школа», 1972 — 126—139 с.

4.Штокало И.3. Операционное исчисление (обобщения и приложения) Киев, Издательство «Наукова Думка», 1972 —131—144 с.


источники:

http://topuch.ru/reshenie-differencialenih-uravnenij-operacionnim-metodom/index.html

http://infourok.ru/statya-na-temu-operacionnyj-metod-resheniya-linejnyh-differencialnyh-uravnenij-i-ih-sistem-5471532.html