Найти решение дифференциального уравнения в виде ряда

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Разложение решения уравнения в степенной ряд

Этот прием является особенно удобным в применении к линейным дифференциальным уравнениям. Проиллюстрируем его применение на примере уравнения второго порядка. Пусть дано дифференциальное уравнение второго порядка

Предположим, что коэффициенты и представляются в виде рядов, расположенных по целым положительным степеням , так что уравнение (1) можно переписать в виде

Решение этого уравнения будем искать также в виде степенного ряда

Подставляя это выражение и его производных в (2), получаем

Перемножая степенные ряды, собирая подобные члены и приравнивая нулю коэффициенты при всех степенях в левой части (4), получаем ряд уравнений:

Каждое последующее из уравнений (5) содержит одним искомым коэффициентом больше, чем предыдущее. Коэффициенты и остаются произвольными и играют роль произвольных постоянных. Первое из уравнений (5) дает , второе дает , третье — , и т.д. Вообще из (к + 1)-го уравнения можно определить , зная .

Практически удобно поступать следующим образом. Определим по описанной выше схеме два решения и , причем для выберем и , а для выберем и , что равносильно следующим начальными условиям:

Всякое решение уравнения (1) будет линейной комбинацией решений и .

Если начальные условия имеют вид , то очевидно,

Имеет место следующая теорема.

Теорема. Если ряды и сходятся при , то построенный указанным выше способом степенной ряд (3) будет также сходящимся при этих значениях и явится решением уравнения (1).

В частности, если и — многочлены от , то ряд (3) будет сходиться при любом значении .

Пример 1. Найти решения уравнения в виде степенного ряда.

Решение. Ищем в виде ряда , тогда

Подставляя и в (6), получаем

Приводя в (7) подобные члены и приравнивая нулю коэффициенты при всех степенях , получаем соотношения, из которых найдем коэффициенты

Положим для определенности, что . Тогда легко находим, что

52. Решение дифференциальных уравнений с помощью сТепенных рядов

С помощью степенных рядов возможно интегрировать дифференциальные уравнения.

Рассмотрим линейное дифференциальное уравнение вида:

Если все коэффициенты и правая часть этого уравнения разлагаются в сходящиеся в некотором интервале степенные ряды, то существует решение этого уравнения в некоторой малой окрестности нулевой точки, удовлетворяющее начальным условиям.

Это решение можно представить степенным рядом:

Для нахождения решения остается определить неизвестные постоянные Ci.

Эта задача решается Методом сравнения неопределенных коэффициентов. Записанное выражение для искомой функции подставляем в исходное дифференциальное уравнение, выполняя при этом все необходимые действия со степенными рядами (дифференцирование, сложение, вычитание, умножение и пр.)

Затем приравниваем коэффициенты при одинаковых степенях Х в левой и правой частях уравнения. В результате с учетом начальных условий получим систему уравнений, из которой последовательно определяем коэффициенты Ci.

Отметим, что этот метод применим и к нелинейным дифференциальным уравнениям.

Пример. Найти решение уравнения C начальными условиями Y(0)=1, Y’(0)=0.

Решение уравнения будем искать в виде

Подставляем полученные выражения в исходное уравнение:

Отсюда получаем:

Получаем, подставив начальные условия в выражения для искомой функции и ее первой производной:

Окончательно получим:

Итого:

Существует и другой метод решения дифференциальных уравнений с помощью рядов. Он носит название Метод последовательного дифференцирования.

Рассмотрим тот же пример. Решение дифференциального уравнения будем искать в виде разложения неизвестной функции в ряд Маклорена.

Если заданные начальные условия Y(0)=1, Y’(0)=0 подставить в исходное дифференциальное уравнение, получим, что

Далее запишем дифференциальное уравнение в виде и будем последовательно дифференцировать его по Х.

После подстановки полученных значений получаем:


источники:

http://mathhelpplanet.com/static.php?p=razlozhenie-resheniya-uravneniya-v-stepennoi-ryad

http://matica.org.ua/metodichki-i-knigi-po-matematike/kurs-vysshei-matematiki-3/52-reshenie-differentcialnykh-uravnenii-s-pomoshchiu-stepennykh-riadov