Найти решение уравнения однородного линейного уравнения

Системы линейных однородных уравнений

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения нетривиального и фундаментального решения СЛАУ. Полученное решение сохраняется в файле Word (см. пример решения).

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Свойства систем линейных однородных уравнений

Теорема. Система в случае m=n имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Теорема. Любая линейная комбинация решений системы также является решением этой системы.
Определение. Совокупность решений системы линейных однородных уравнений называется фундаментальной системой решений, если эта совокупность состоит из линейно независимых решений и любое решение системы является линейной комбинацией этих решений.

Теорема. Если ранг r матрицы системы меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из ( n-r ) решений.

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Решение линейных однородных дифференциальных уравнений с постоянными коэффициентами

Вид общего решения

Рассмотрим линейное однородное дифференциальное уравнение с постоянными коэффициентами:
(1) .
Его решение можно получить следуя общему методу понижения порядка.

Однако проще сразу получить фундаментальную систему n линейно независимых решений и на ее основе составить общее решение. При этом вся процедура решения сводится к следующим шагам.

Ищем решение уравнения (1) в виде . Получаем характеристическое уравнение:
(2) .
Оно имеет n корней. Решаем уравнение (2) и находим его корни . Тогда характеристическое уравнение (2) можно представить в следующем виде:
(3) .
Каждому корню соответствует одно из линейно независимых решений фундаментальной системы решений уравнения (1). Тогда общее решение исходного уравнения (1) имеет вид:
(4) .

Действительные корни

Рассмотрим действительные корни. Пусть корень однократный. То есть множитель входит в характеристическое уравнение (3) только один раз. Тогда этому корню соответствует решение
.

Пусть – кратный корень кратности p . То есть
. В этом случае множитель входит в характеристическое уравнение (3) p раз:
.
Этим кратным (равным) корням соответствуют p линейно независимых решений исходного уравнения (1):
; ; ; . ; .

Комплексные корни

Рассмотрим комплексные корни характеристического уравнения (3). Выразим комплексный корень через действительную и мнимую части:
.
Поскольку коэффициенты исходного уравнения (1) действительные, то кроме корня имеется комплексно сопряженный корень
.

Пусть комплексный корень однократный. Тогда паре корней соответствуют два линейно-независимых решения уравнения (1):
; .

Пусть – кратный комплексный корень кратности p . Тогда комплексно сопряженное значение также является корнем характеристического уравнения кратности p и множитель входит в разложение на множители (3) p раз:
.
Этим 2 p корням соответствуют 2 p линейно независимых решений:
; ; ; . ;
; ; ; . .

После того как фундаментальная система линейно независимых решений найдена, по формуле (4) получаем общее решение уравнения (1).

Примеры решений задач

Пример 1

Найти общее решение однородного дифференциального уравнения седьмого порядка с постоянными коэффициентами:
.

Ищем решение в виде . Составляем характеристическое уравнение:
.
Преобразуем его:
;
;
.

Рассмотрим корни этого уравнения. Мы получили четыре комплексных корня кратности 2:
; .
Им соответствуют четыре линейно-независимых решения исходного уравнения:
; ; ; .

Также мы имеем три действительных корня кратности 3:
.
Им соответствуют три линейно-независимых решения:
; ; .

Общее решение исходного уравнения имеет вид:
.

Пример 2

Это однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Ищем решение в виде . Составляем характеристическое уравнение:
.
Решаем квадратное уравнение.
.

Мы получили два комплексных корня:
.
Им соответствуют два линейно-независимых решения:
.
Общее решение уравнения:
.

Пример 3

Найти общее решение однородного дифференциального уравнения четвертого порядка с постоянными коэффициентами:
.

Ищем решение в виде . Составляем характеристическое уравнение:
.
Выносим за скобки:
(П3.1) .
Решаем квадратное уравнение :
.
Получили два комплексных корня, которые обозначим как . Тогда . Перепишем характеристическое уравнение (П3.1) в эквивалентном виде:
.
Отсюда видно, что оно имеет два кратных корня кратности 2, и два комплексно сопряженных корня . Кратным корням соответствуют два линейно независимых решения:
;
.
Комплексно сопряженным корням , соответствуют решения
.
Общее решение:
.

Автор: Олег Одинцов . Опубликовано: 29-07-2013 Изменено: 27-10-2020


источники:

http://mathdf.com/dif/ru/

http://1cov-edu.ru/differentsialnye-uravneniya/lineinie_postoyannie_koeffitsienti/odnorodnie/