Найти точки пересечения уравнений 7 класс

Как найти точки пересечения графиков функций — алгоритмы и примеры правила и методики

Существует определенный класс задач по дисциплине «Алгебра и начало анализа», в которых нужно найти точки пересечения графиков функций без их построения. Решать такие задания довольно просто, когда известна определенная методика нахождения координат по оси абсцисс и ординат. Однако для этого необходимо научиться правильно находить корни уравнений различных типов.

Общие сведения

Функция — некоторое выражение, описывающее зависимость между двумя величинами. Следует отметить, что последних может быть несколько. Параметр, который не зависит от других элементов, называется аргументом, а зависимое тождество — значением функции.

Точка пересечения графиков означает, что у системы уравнений существует общее решение. Следует отметить, что для их нахождения можно воспользоваться графическим и аналитическим методом. Первый подразумевает построение графического представления выражения с переменной.

Чтобы найти пересечение графиков функций аналитическим способом, необходимо решить уравнение, корни которого являются искомыми точками. Для их нахождения специалисты рекомендуют получить базовые понятия о равенствах с переменными, а также о методах их решения.

Классификация уравнений

Уравнение — тождество, содержащее неизвестные величины (переменные), которые следует найти при помощи определенного алгоритма. Последний зависит от типа выражений. Тождества классифицируются на несколько типов:

  • Линейные.
  • Квадратные.
  • Кубические.
  • Биквадратные.

    Линейными являются уравнения, содержащие единичную степень, т. е. 2t=4. Квадратные — тождества, у которых переменная возведена в квадрат. Они имеют следующий вид: Pt^2+St+U=0, где Р и S — коэффициенты при неизвестных, а U — свободный член.

    Кубическое — уравнение вида Ot^3+Pt^2+St+U=0, где O, Р и S — коэффициенты при переменных, а U — константа. Последний вид — равенства, в которых при переменной присутствует четвертая степень (Nt^4+Ot^3+Pt^2+St+U=0).

    Равносильные тождества

    При выполнении математических операций каждое выражение может быть заменено на эквивалентное, т. е. равносильное. Иными словами, равносильными называются уравнения, различные по составляющим их элементам, но имеющие одинаковые корни. Следует отметить, что ими являются также выражения, не имеющие решений. Математики выделяют три свойства: симметричность, транзитивность и разложение на множители.

    Формулировка первого: когда I уравнение равносильно II, то значит, и II равносильно I. Суть транзитивности состоит в том, что если I равносильно II, а II — III, то значит I эквивалентно III. Второе свойство имеет такую формулировку: произведение двух элементов, содержащих переменные, равное нулевому значению, эквивалентно двум выражениям, которые можно приравнять к 0. Математическая запись утверждения имеет такой вид: R(t)*S(t)=0 .

    Математические преобразования

    Для решения уравнения необходимо выполнить некоторые математические преобразования. Они должны выполняться грамотно, поскольку любая ошибка приводит к образованию ложных корней. Допустимыми операциями являются следующие:

  • Правильное раскрытие скобок с учетом алгебраической операции и знаков.
  • Упрощение выражения (приведение подобных величин).
  • Перенос элементов в любые части равенства с противоположным знаком.
  • Возможность прибавлять или вычитать эквивалентные величины.
  • Деление и умножение на любые эквивалентные значения, не превращающие тождества в пустое множество.

    Специалисты рекомендуют избегать операций, при которых сокращаются неизвестные величины. Следствием этого могут стать ложные корни. Кроме того, делитель не должен иметь значения, при которых его значение равно 0. Последнее условие следует всегда проверять, а при решении ни один корень уравнения не должен соответствовать значению переменной при нахождении окончательных корней.

    Иными словами, в выражении (t+2)^2=0 для упрощения можно разделить обе части на (t+2) при условии, что t не равно -2, т. к. [(t+2)^2]/(t+2)=0/(t+2).

    Однако при решении (t+2)=0 получается, что t=-2, а это недопустимо. Следовательно, вышеописанный метод не всегда подходит.

    Разложение на множители

    Для решения уравнений при выполнении математических преобразований могут потребоваться специальные формулы разложения на множители. Их еще называют тождествами сокращенного умножения. К ним относятся следующие:

  • Квадрат суммы и разности: (p+r)^2=p^2+2pr+r^2 и (p-r)^2=p^2-2pr+r^2 соответственно.
  • Разность квадратов: p^2-r^2=(p-r)(p+r).

    В некоторых случаях можно воспользоваться сразу двумя соотношениями, т. е. выделить квадрат суммы, а затем из первого — разность квадратов. Выделение первого осуществляется группировкой посредством скобок в выражении, а затем введение положительного и отрицательного элементов, т. е. s^2+4s-5=s^2+4s+4-4-5=(s^2+4s+4)-4-5=(s+2)^2 -9. Для получения всех элементов формулы «p+r)^2=p^2+2pr+r^2» нужно прибавить, а затем отнять 4. При этом значение равенства не изменится, поскольку 4-4=0.

    Следует отметить, что математические преобразования выражения (s+2)^2 -9 не заканчиваются, поскольку его можно представить в виде разности квадратов, т. е. (s+2-9)(s+2+9)=(s-7)(s+11). Кроме того, формулы сокращенного умножения рекомендуется применять при понижении степени.

    Методики нахождения точек

    Чтобы узнать, пересекаются ли графики функций, нужно приравнять соответствующие тождества, а затем решать уравнение. Однако при такой операции могут получиться различные равенства с неизвестными. В этом случае требуется обратить внимание на нижеописанные методики решения для каждого вида.

    Первой и второй степени

    Уравнение первой степени, или линейное, решается очень просто. Для этого необходимо перенести переменные величины в одну, а известные — в другую сторону. Методика решения имеет следующий вид:

  • Раскрыть скобки и привести подобные коэффициенты.
  • Выполнить перенос известных в одну, а неизвестных — в другую часть равенства.
  • Произвести необходимые математические преобразования.
  • Найти корень.

    Сложнее решается квадратное уравнение. Существует несколько способов нахождения его корней:

  • Разложить на множители.
  • Выделить полный квадрат.
  • Найти дискриминант.
  • По теореме Виета.

    Первый способ применяется довольно часто, поскольку с его помощью можно понижать степень при неизвестной величине. Второй подразумевает выделение квадрата по одной из формул сокращенного умножения. Чтобы воспользоваться одним из двух методов, необходимо знать соответствующие тождества (правила разложения на множители).

    Однако не всегда можно быстро решить квадратное уравнение при помощи первых двух методов. Еще один вариант — нахождение корней через дискриминант (Д), т. е. дополнительный параметр, позволяющий сразу находить решения. Он находится по следующей формуле: Д=(-S)^2 -4PU.

    Следует отметить, что при Д>0 переменная принимает два значения, которые превращают равенство в истину. Если Д=0, то корень только один. Когда Д

    Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта «Образование».

    Пересечение прямых. Точка пересечения двух прямых

    Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.

    Точка пересечения двух прямых на плоскости

    Если система уравнений:

    • имеет единственное решение, то прямые пересекаются;
    • имеет бесконечное множество решений, то прямые совпадают;
    • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

    Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

    y = 2 x — 1 y = -3 x + 1

    Вычтем из первого уравнения второе

    y — y = 2 x — 1 — (-3 x + 1) y = -3 x + 1 => 0 = 5 x — 2 y = -3 x + 1

    Из первого уравнения найдем значение x

    5 x = 2 y = -3 x + 1 => x = 2 5 = 0.4 y = -3 x + 1

    Подставим значение x во второе уравнение и найдем значение y

    x = 0.4 y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

    Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

    Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

    y = 2 x — 1 x = 2 t + 1 y = t

    В первое уравнение подставим значения x и y из второго и третьего уравнений.

    t = 2·(2 t + 1) — 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>

    -3 t = 1 x = 2 t + 1 y = t => t = — 1 3 x = 2 t + 1 y = t

    Подставим значение t во второе и третье уравнение

    t = — 1 3 x = 2·(- 1 3 ) + 1 = — 2 3 + 1 = 1 3 y = — 1 3

    Ответ. Точка пересечения двух прямых имеет координаты ( 1 3 , — 1 3 )

    Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

    2 x + 3 y = 0 x — 2 3 = y 4

    Из второго уравнения выразим y через x

    2 x + 3 y = 0 y = 4· x — 2 3

    Подставим y в первое уравнение

    2 x + 3·4· x — 2 3 = 0 y = 4· x — 2 3 => 2 x + 4·( x — 2) = 0 y = 4· x — 2 3 =>

    2 x + 4 x — 8 = 0 y = 4· x — 2 3 => 6 x = 8 y = 4· x — 2 3 =>

    x = 8 6 = 4 3 y = 4· x — 2 3 => x = 8 6 = 4 3 y = 4· 4/3 — 2 3 = 4· -2/3 3 = — 8 9

    Ответ. Точка пересечения двух прямых имеет координаты ( 4 3 , — 8 9 )

    Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

    Решим также эту задачу используя систему уравнений:

    y = 2 x — 1 y = 2 x + 1

    Вычтем из первого уравнения второе

    y — y = 2 x — 1 — (2 x + 1) y = -3 x + 1 => 0 = -2 y = -3 x + 1

    В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

    Ответ. Прямые не пересекаются (прямые параллельны).

    Решение: Подставим координаты точки N в уравнения прямых.

    Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

    Точка пересечения двух прямых в пространстве

    Если система уравнений:

    • имеет единственное решение, то прямые пересекаются;
    • имеет бесконечное множество решений, то прямые совпадают;
    • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

    Решение: Составим систему уравнений

    x — 1 = a y — 1 = a z — 1 = a x — 3 -2 = b 2 — y = b z = b => x = a + 1 y = a + 1 z = a + 1 x — 3 -2 = b 2 — y = b z = b =>

    Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

    x = a + 1 y = a + 1 z = a + 1 a + 1 — 3 -2 = b 2 — ( a + 1) = b a + 1 = b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 = b

    К шестому уравнению добавим пятое уравнение

    x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 + (1 — a ) = b + b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b b = 1

    Подставим значение b в четвертое и пятое уравнения

    x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = 1 1 — a = 1 b = 1 => x = a + 1 y = a + 1 z = a + 1 a — 2 = -2 a = 0 b = 1 =>

    x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1

    Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

    Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

    x = 2 t — 3 y = t z = — t + 2 x = a + 1 y = 3 a — 2 z = 3

    Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

    x = 2 t — 3 y = t z = — t + 2 2 t — 3 = a + 1 t = 3 a — 2 — t + 2 = 3 => x = 2 t — 3 y = t z = — t + 2 2 t = a + 4 t = 3 a — 2 t = -1 =>

    Подставим значение t из шестого уравнения в остальные уравнения

    x = 2·(-1) — 3 y = (-1) z = -(-1) + 2 2·(-1) = a + 4 -1 = 3 a — 2 t = -1 => x = -5 y = -1 z = 3 a = -6 a = 1 3 t = -1

    Ответ. Так как -6 ≠ 1 3 , то прямые не пересекаются.

    Графический метод решения системы линейных уравнений

    Расположение графиков и количество решений системы линейных уравнений

    Рассмотрим систему двух уравнений: $ <\left\< \begin 3x-y = 5 \\ 3x+2y = 8\end \right.>$

    Построим график каждого из уравнений и найдём точку пересечения.

    Точка пересечения (2;1)

    Подставим координаты точки пересечения в уравнение:

    $ <\left\< \begin3 \cdot 2-1 ≡ 5\\ 3\cdot2+2\cdot1 ≡ 8\end \right.> \Rightarrow$ (2;1) — решение системы

    Таким образом, точка пересечения графиков уравнений является решением системы.

    Графики двух уравнений системы могут пересекаться, быть параллельными и совпадать. Получаем разное количество решений системы в зависимости от соотношения коэффициентов уравнений:


    источники:

    http://ru.onlinemschool.com/math/library/analytic_geometry/lines_intersection/

    http://reshator.com/sprav/algebra/7-klass/graficheskij-metod-resheniya-sistemy-linejnyh-uravnenij/