Найти центры и радиусы окружностей по уравнению

Нахождение центра и радиуса окружности по общему уравнению окружности

Этот калькулятор проверяет, является ли введенное уравнение общим уравнением окружности, и вычисляет координаты центра и радиуса окружности, если это возможно. Описание способа решения подобных задач находится под калькулятором

Нахождение центра и радиуса окружности по общему уравнению окружности

Уравнение НЕ является общим уравнением окружности

Приведение общего уравнения окружности к стандартному виду

Калькулятор выше можно применять для решения задач на уравнение окружности. Чаще всего вы имеете дело с уравнением окружности, выраженном в так называемом стандартном виде

Из этого уравнения достаточно легко найти центр окружности — это будет точка с координатами (a,b), и радиус окружности — это будет квадратный корень из правой части уравнения.

Однако, если возвести в квадрат выражения в скобках и перенести правую часть налево, то уравнение станет выглядеть примерно так:

Это — уравнение окружности в общем виде. Здесь радиус и центр окружности уже не выделены явно, и в задачах обычно просят их найти именно по общему виду уравнения окружности.

Способ решения такого рода задач следующий:

Перегруппируем слагаемые уравнения

  • Для каждой скобки применим метод выделения полного квадрата (подробнее смотри тут — Метод выделения полного квадрата), то есть заменим выражение вида на выражение вида . С учетом того, что коэффициенты при квадратах равны единице, а свободный член можно принять за ноль, формула для вычисления h и k упрощаются.
  • Как видим, выражение в конце это уравнение окружности в стандартном виде, из которого уже легко получить и координаты центра окружности и ее радиус. Если же справа получилось отрицательное число — значит заданное вначале уравнение не является уравнением окружности (бывают задачи и на такую проверку). Калькулятор тоже проверяет это условие.

    Для решения обратной задачи — нахождения общего уравнения окружности по координатам центра и радиусу — можно использовать калькулятор Уравнение окружности по заданному центру и радиусу в различных формах

    Найти центр и радиус окружности

    Если окружность задана уравнением вида

    найти центр (a;b) и радиус R такой окружности несложно.

    Определить по уравнению окружности координаты её центра и радиуса:

    Таким образом, центр данной окружности — точка (3;7), радиус R=2.

    a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

    Центр окружности — (0;-3), радиус R=3.

    Центр — в точке (6;0), радиус R=√5.

    Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

    Чтобы найти центр и радиус окружности, заданной уравнением вида

    нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

    Для этого сначала сгруппируем слагаемые

    затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

    При a²+b²-c>0 это уравнение задаёт окружность с радиусом

    При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

    При a²+b²-c

    Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

    Центром этой окружности является точка (-5;3), радиус R=7.

    Центр окружности — точка (2,5;0), радиус R=1,5.

    Найти радиусы окружностей и координаты их центров

    Найти центр и радиус окружности

    Если окружность задана уравнением вида

    найти центр (a;b) и радиус R такой окружности несложно.

    Определить по уравнению окружности координаты её центра и радиуса:

    Таким образом, центр данной окружности — точка (3;7), радиус R=2.

    a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

    Центр окружности — (0;-3), радиус R=3.

    Центр — в точке (6;0), радиус R=√5.

    Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

    Чтобы найти центр и радиус окружности, заданной уравнением вида

    нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

    Для этого сначала сгруппируем слагаемые

    затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

    При a²+b²-c>0 это уравнение задаёт окружность с радиусом

    При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

    При a²+b²-c

    Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

    Центром этой окружности является точка (-5;3), радиус R=7.

    Центр окружности — точка (2,5;0), радиус R=1,5.

    Нахождение центра и радиуса окружности по общему уравнению окружности

    Этот калькулятор проверяет, является ли введенное уравнение общим уравнением окружности, и вычисляет координаты центра и радиуса окружности, если это возможно. Описание способа решения подобных задач находится под калькулятором

    Нахождение центра и радиуса окружности по общему уравнению окружности

    Уравнение НЕ является общим уравнением окружности

    Приведение общего уравнения окружности к стандартному виду

    Калькулятор выше можно применять для решения задач на уравнение окружности. Чаще всего вы имеете дело с уравнением окружности, выраженном в так называемом стандартном виде

    Из этого уравнения достаточно легко найти центр окружности — это будет точка с координатами (a,b), и радиус окружности — это будет квадратный корень из правой части уравнения.

    Однако, если возвести в квадрат выражения в скобках и перенести правую часть налево, то уравнение станет выглядеть примерно так:

    Это — уравнение окружности в общем виде. Здесь радиус и центр окружности уже не выделены явно, и в задачах обычно просят их найти именно по общему виду уравнения окружности.

    Способ решения такого рода задач следующий:

    Перегруппируем слагаемые уравнения

  • Для каждой скобки применим метод выделения полного квадрата (подробнее смотри тут — Метод выделения полного квадрата), то есть заменим выражение вида на выражение вида . С учетом того, что коэффициенты при квадратах равны единице, а свободный член можно принять за ноль, формула для вычисления h и k упрощаются.
  • Как видим, выражение в конце это уравнение окружности в стандартном виде, из которого уже легко получить и координаты центра окружности и ее радиус. Если же справа получилось отрицательное число — значит заданное вначале уравнение не является уравнением окружности (бывают задачи и на такую проверку). Калькулятор тоже проверяет это условие.

    Для решения обратной задачи — нахождения общего уравнения окружности по координатам центра и радиусу — можно использовать калькулятор Уравнение окружности по заданному центру и радиусу в различных формах

    Радиус — что это такое и как найти радиус окружности

    Через длину стороны

    Формула для нахождения длины окружности через радиус:

    , где r — радиус окружности.

    Найти радиус круга, зная окружность

    Окружность круга PРезультат

    Радиус и диаметр

    Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

    А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

    Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

    Обозначается диаметр также первой буквой своего слова – D или d.

    Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

    Длина диаметра равна удвоенной длине радиуса.

    Вычисление радиуса

    Радиус можно посчитать разными способами.

    Если известен диаметр

    Этот способ самый простой. Диаметр равен двум радиусам. Поэтому радиус будет высчитываться по формуле r=d/2.

    Если известна длина окружности круга

    Также несложно будет узнать радиус, если известна длина окружности круга. Формула для расчета длины окружности C=2πr, в которой C является длиной окружности, π=3,14, а r — это как раз искомый радиус.

    Преобразовав данную формулу, получим: r=C/2π. Вообще, число «Пи» в формуле — это постоянное значение, округленное до 3,14. На самом деле «Пи» выглядит так:

    Означает данное значение отношение длины окружности к диаметру той же окружности.

    Если известна площадь круга

    Формула площади круга выглядит так: A= π(r²). Эту формулу можно преобразовать в формулу радиуса:

    В ней A — это площадь круга, число «Пи» мы уже знаем, оно равно округленно 3,14, а r — это и есть искомое значение радиуса.

    Как найти радиус круга, все школьники учат на геометрии. Взрослые, конечно, со временем забывают эти формулы. Но, прочитав данную статью, радиус круга может найти каждый: и взрослый, и ребенок.

    Способ расчета радиуса круга:

    Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
    Формула радиуса круга:
    где P – длина окружности, pi – число π, равное примерно 3.14

    Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
    Формула радиуса круга:
    где S – площадь круга, pi – число π, равное примерно 3.14

    Через сторону описанного квадрата

    Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.

    • r — искомый радиус окружности.
    • a — сторона описанного квадрата.

    Как посчитать радиус зная длину окружности

    Чему равен радиус (r) если длина окружности C?

    Формула

    r = C / , где π ≈ 3.14

    Свойства радиуса

    В отношении радиуса действуют несколько важных правил:

    1. Радиус составляет половину диаметра. Это мы продемонстрировали только что.
    2. У окружности может быть сколько угодно радиусов. Но все они будут равны по длине между собой.

    Радиус, который перпендикулярен хорде, делит ее на две равные части.

    Напомним, хордой называется любой отрезок, который проходит через две точки на поверхности окружности, но не через центр. Этим она принципиально отличается от диаметра.

    По площади сектора и центральному углу

    • Например, если площадь сектора равна 50 см 2 , а центральный угол равен 120 градусов, формула запишется следующим образом: .

    Площадь сегмента

    Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла .

    Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах , получаем

    В случае, когда величина α выражена в в радианах , получаем

    Формулы для площади круга и его частей

    Числовая характеристикаРисунокФормула
    Площадь круга

    ,

    где R – радиус круга, D – диаметр круга

    Площадь сектора

    ,

    если величина угла α выражена в радианах

    ,

    если величина угла α выражена в градусах

    Площадь сегмента

    ,

    если величина угла α выражена в радианах

    ,

    если величина угла α выражена в градусах

    Площадь круга

    ,

    где R – радиус круга, D – диаметр круга

    Площадь сектора

    ,

    если величина угла α выражена в радианах

    ,

    если величина угла α выражена в градусах

    Площадь сегмента

    ,

    если величина угла α выражена в радианах

    ,

    если величина угла α выражена в градусах

    Центральный угол, вписанный угол и их свойства

    Связанные определения

    • Центральный угол в окружности — это угол , образованный двумя радиусами.
    • Радиус кривизны кривой — это радиус окружности, имеющей с этой кривой касание второго порядка.

    Примеры задач

    Задание 1
    Длина окружности равняется 87,92 см. Найдите ее радиус.

    Решение:
    Используем первую формулу (через периметр):

    Задание 2
    Найдите радиус круга, если его площадь составляет 254,34 см 2 .

    Решение:
    Воспользуемся формулой, выраженной через площадь фигуры:

    Длина дуги

    Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла .

    В случае, когда величина α выражена в градусах , справедлива пропорция

    из которой вытекает равенство:

    В случае, когда величина α выражена в радианах , справедлива пропорция

    из которой вытекает равенство:

    Уравнение окружности

    r 2 = ( x – a ) 2 + ( y – b ) 2

    3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами ( a, b ) в декартовой системе координат:


    источники:

    http://www.treugolniki.ru/najti-centr-i-radius-okruzhnosti/

    http://b4.cooksy.ru/articles/nayti-radiusy-okruzhnostey-i-koordinaty-ih-tsentrov