Найти уравнение фокальной оси эллипса

2.3 Эллипс

Эллипсом называется геометрическое место точек, сумма расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная (больше расстояния между фокусами).

Обозначим фокусы эллипса через F1 и F2 (рисунок 2.1), а расстояние между ними через 2С

Примем за ось абсцисс прямую, соединяющую фокусы, выбрав на ней положительное направление от F2 к F1; начало координат возьмем в середине отрезка F1F2 между фокусами. Тогда координаты точек F1 и F2 будут, соответственно, (С, 0) и (–С, 0).

Обозначим сумму расстояний точек эллипса от фокусов через 2А. По определению эллипса имеем

Расписав покоординатно данное равенство, после несложных преобразований получим каноническое уравнение эллипса.

Каноническое уравнение эллипса в выбранной системе координат с данными обозначениями имеет вид

(2.4)

Кривые второго порядка

Кривая второго порядка — это некоторая линия на плоскости, которая в декартовой системе координат задается общим уравнением:

Имеем дело с уравнением второй степени, в котором коэффициенты при старших членах — при вторых степенях одновременно не нули.

или можно встретить следующую форму записи:

К кривым второго порядка относятся окружность, эллипс, гипербола и парабола.

Покажем на примере определение значений коэффициентов.

Рассмотрим кривую второго порядка:

Вычислим определитель из коэффициентов:

Если Δ = 0, кривая второго порядка параболического типа,

если Δ > 0, кривая второго порядка эллиптического типа,

если Δ F1 и F2 — фокусы.

с — фокальное расстояние,

Каноническое уравнение эллипса с центром симметрии в начале координат:

2а — большая ось эллипса, 2b — малая ось эллипса.

а — большая полуось эллипса, b — малая полуось эллипса.

Если a = b, то имеем окружность с радиусов R = a = b:

Если центр эллипса находится не в начале координат, а в некоторой точке C(x0;y0), оси эллипса параллельны осям координат, то каноническое уравнение эллипса имеет вид:

Эксцентриситет — число, равное отношению фокального расстояния к большей полуоси:

Эксцентриситет характеризует отклонение эллипса от окружности, т.е. чем эксцентриситет больше, тем эллипс более сплющен, вытянут.

Гипербола — множество точек на плоскости для каждой из которых абсолютная величина разности расстояний до двух данных точек F1 и F2 есть величина постоянная, меньшая расстояния между этими точками.

с — фокальное расстояние,

Расстояние от центра гиперболы до одного из фокусов называется фокальным расстоянием.

Каноническое уравнение гиперболы с центром симметрии в начале координат:

x — действительная ось, y — мнимая ось.

а — действительная полуось, b — мнимая полуось.

Если центр гиперболы находится в некоторой точке C(x0;y0), оси симметрии параллельны осям координат, то каноническое уравнение имеет вид:

Эксцентриситет гиперболы — число, равное отношению фокусного расстояния к действительной полуоси.

Чем эксцентриситет меньше, тем гипербола более вытянута, сплюшена вдоль оси Ох.

Директриса гиперболы — прямые, параллельные мнимой оси гиперболы и отстоящая от нее на расстоянии a/Ε.

f1 — правая директриса, f2 — левая директриса.

Порядок построения гиперболы :

1. Строим прямоугольник со сторонами 2a и 2b.

2. Провести асимптоты гиперболы — диагонали построенного прямоугольника.

3. Строим гиперболу с вершинами в точках А 1 (-а;0), А 2 (а;0).

Парабола — множество точек на плоскости для каждой из которых расстояние до данной точки F равно расстоянию до данной прямой f.

F — фокус параболы, f — директриса параболы.

Эллипс

Определение эллипса.

Напомним, что мы назвали эллипсом линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
\frac>>+\frac>>=1\label
$$
при условии \(a \geq b > 0\).

Из уравнения \eqref следует, что для всех точек эллипса \(|x| \leq a\) и \(|y| \leq b\). Значит, эллипс лежит в прямоугольнике со сторонами \(2a\) и \(2b\).

Точки пересечения эллипса с осями канонической системы координат, имеющие координаты \((a, 0)\), \((-a, 0)\), \((0, b)\) и \((0, -b)\), называются вершинами эллипса. Числа \(a\) и \(b\) называются соответственно большой и малой полуосями эллипса.

Рис. 8.1. Эллипс

В каноническое уравнение входят только квадраты координат. Поэтому, если координаты \((x, y)\) какой-либо точки /(M) ему удовлетворяют, то ему удовлетворяют и координаты \((-x, y)\), \((x, -y)\) и \((-x, -y)\) точек \(M_<1>\), \(M_<2>\) и \(M_<3>\) (рис. 8.1). Следовательно, справедливо следующее утверждение.

Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы — его центром симметрии.

Внешний вид эллипса проще всего описать сравнением с окружностью радиуса \(a\) с центром в центре эллипса: \(x^<2>+y^<2>=a^<2>\). При каждом \(x\) таком, что \(|x| Рис. 8.2. Сжатие окружности к эллипсу. Ординаты всех точек уменьшаются в отношении \(b/a\).

Фокусы, эксценриситет и директрисы эллипса.

У эллипса есть две замечательные точки, которые называются его фокусами.

Фокусами называются точки \(F_<1>\) и \(F_<2>\) с координатами \((c, 0)\) и \((-c, 0)\) в канонической системе координат (рис. 8.3).

Рис. 8.3. Фокусы эллипса.

Для окружности \(c=0\), и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не является окружностью.

Отметим, что \(\varepsilon Утверждение 2.

Расстояние от произвольной точки \(M(x, y)\), лежащей на эллипсе, до каждого из фокусов (рис. 8.3) является линейной функцией от ее абсциссы \(x\):
$$
r_<1>=|F_<1>M|=a-\varepsilon x,\ r_<2>=|F_<2>M|=a+\varepsilon x.\label
$$

Очевидно, что \(r_<1>^<2>=(x-c)^<2>+y^<2>\). Подставим сюда выражение для \(y^<2>\), найденное из уравнения эллипса. Мы получим
$$
r_<1>^<2>=x^<2>-2cx+c^<2>+b^<2>-\fracx^<2>>>.\nonumber
$$

Учитывая равенство \eqref, это можно преобразовать к виду
$$
r_<1>^<2>=a^<2>-2cx+\fracx^<2>>>=(a-\varepsilon x)^<2>.\nonumber
$$
Так как \(x \leq a\) и \(\varepsilon Утверждение 3.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса \(2a\).

Необходимость. Если мы сложим равенства \eqref почленно, то увидим, что
$$
r_<1>+r_<2>=2a.\label
$$
Достаточность. Пусть для точки \(M(x, y)\) выполнено условие \eqref, то есть
$$
\sqrt<(x-c)^<2>+y^<2>>=2a-\sqrt<(x+c)^<2>+y^<2>>.\nonumber
$$
Возведем обе части равенства в квадрат и приведем подобные члены:
$$
xc+a^<2>=a\sqrt<(x+c)^<2>+y^<2>>.\label
$$
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение \eqref. Мы придем к \(b^<2>x^<2>+a^<2>y^<2>=a^<2>b^<2>\), равносильному уравнению эллипса \eqref.

Рис. 8.4. Фокусы и директрисы эллипса.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса \(\varepsilon\).

Уравнение касательной к эллипсу.

Выведем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть \(M_<0>(x_<0>, y_<0>)\) — точка на эллипсе и \(y_ <0>\neq 0\). Через \(M_<0>\) проходит график некоторой функции \(y=f(x)\), который целиком лежит на эллипсе. (Для \(y_ <0>> 0\) это график \(f_<1>(x)=b\sqrt<1-x^<2>/a^<2>>\), для \(y_ <0>Утверждение 5.

Касательная к эллипсу в точке \(M_<0>(x_<0>, y_<0>)\) есть биссектриса угла, смежного с углом между отрезками, соединяющими эту точку с фокусами.

Рис. 8.5.


источники:

http://matecos.ru/mat/matematika/krivye-vtorogo-poryadka.html

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/ellipse/