Найти уравнение касательной к эллипсу онлайн

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Уравнение прямой касательной к графику функции в заданной точке

Эта математическая программа находит уравнение касательной к графику функции \( f(x) \) в заданной пользователем точке \( x_0 \).

Программа не только выводит уравнение касательной, но и отображает процесс решения задачи.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Статью из энциклопедии о касательной прямой вы можете посмотреть здесь (статья из Википедии).

Если вам нужно найти производную функции, то для этого у нас есть задача Найти производную.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
Введите выражение функции \( f(x)\) и число \(x_0\) — абсциссу точки в которой нужно построить касательную Найти уравнение касательной

Немного теории.

Угловой коэффициент прямой

Напомним, что графиком линейной функции \( y=kx+b\) является прямая. Число \(k=tg \alpha \) называют угловым коэффициентом прямой, а угол \( \alpha \) — углом между этой прямой и осью Ox

Уравнение касательной к графику функции

Если точка М(а; f(a)) принадлежит графику функции у = f(x) и если в этой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то из геометрического смысла производной следует, что угловой коэффициент касательной равен f'(a). Далее мы выработаем алгоритм составления уравнения касательной к графику любой функции.

Пусть даны функция у = f(x) и точка М(а; f(a)) на графике этой функции; пусть известно, что существует f'(a). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид y = kx + b, поэтому задача состоит в нахождении значений коэффициентов k и b.

С угловым коэффициентом k все понятно: известно, что k = f'(a). Для вычисления значения b воспользуемся тем, что искомая прямая проходит через точку М(а; f(a)). Это значит, что если подставить координаты точки М в уравнение прямой, получим верное равенство: \(f(a)=ka+b \), т.е. \( b = f(a) — ka \).

Осталось подставить найденные значения коэффициентов k и b в уравнение прямой:

Нами получено уравнение касательной к графику функции \( y = f(x) \) в точке \( x=a \).

Алгоритм нахождения уравнения касательной к графику функции \( y=f(x) \)
1. Обозначить абсциссу точки касания буквой \( a \)
2. Вычислить \( f(a) \)
3. Найти \(f'(x) \) и вычислить \(f'(a) \)
4. Подставить найденные числа \( a, f(a), f'(a) \) в формулу \( y=f(a)+ f'(a)(x-a) \)

Уравнение касательной к графику функции

Онлайн калькулятор для вычисления уравнения касательной к графику функции.
Ряд Маклорена (=Макларена) это ряд Тейлора в окрестности точки а=0.
Вычисление значения функции y0 в точке x0:y0 = f(x0). Если исходное значение y0
задано, то переходим к п.2.
Нахождение производной y'(x).
Вычисление значения производной при x0.
Запись уравнения касательной к кривой линии в форме: yk = y0 + y'(y0)(x — x0)

Калькулятор поможет составить и решить уравнение касательной к графику функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Эллипс

Определение эллипса.

Напомним, что мы назвали эллипсом линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
\frac>>+\frac>>=1\label
$$
при условии \(a \geq b > 0\).

Из уравнения \eqref следует, что для всех точек эллипса \(|x| \leq a\) и \(|y| \leq b\). Значит, эллипс лежит в прямоугольнике со сторонами \(2a\) и \(2b\).

Точки пересечения эллипса с осями канонической системы координат, имеющие координаты \((a, 0)\), \((-a, 0)\), \((0, b)\) и \((0, -b)\), называются вершинами эллипса. Числа \(a\) и \(b\) называются соответственно большой и малой полуосями эллипса.

Рис. 8.1. Эллипс

В каноническое уравнение входят только квадраты координат. Поэтому, если координаты \((x, y)\) какой-либо точки /(M) ему удовлетворяют, то ему удовлетворяют и координаты \((-x, y)\), \((x, -y)\) и \((-x, -y)\) точек \(M_<1>\), \(M_<2>\) и \(M_<3>\) (рис. 8.1). Следовательно, справедливо следующее утверждение.

Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы — его центром симметрии.

Внешний вид эллипса проще всего описать сравнением с окружностью радиуса \(a\) с центром в центре эллипса: \(x^<2>+y^<2>=a^<2>\). При каждом \(x\) таком, что \(|x| Рис. 8.2. Сжатие окружности к эллипсу. Ординаты всех точек уменьшаются в отношении \(b/a\).

Фокусы, эксценриситет и директрисы эллипса.

У эллипса есть две замечательные точки, которые называются его фокусами.

Фокусами называются точки \(F_<1>\) и \(F_<2>\) с координатами \((c, 0)\) и \((-c, 0)\) в канонической системе координат (рис. 8.3).

Рис. 8.3. Фокусы эллипса.

Для окружности \(c=0\), и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не является окружностью.

Отметим, что \(\varepsilon Утверждение 2.

Расстояние от произвольной точки \(M(x, y)\), лежащей на эллипсе, до каждого из фокусов (рис. 8.3) является линейной функцией от ее абсциссы \(x\):
$$
r_<1>=|F_<1>M|=a-\varepsilon x,\ r_<2>=|F_<2>M|=a+\varepsilon x.\label
$$

Очевидно, что \(r_<1>^<2>=(x-c)^<2>+y^<2>\). Подставим сюда выражение для \(y^<2>\), найденное из уравнения эллипса. Мы получим
$$
r_<1>^<2>=x^<2>-2cx+c^<2>+b^<2>-\fracx^<2>>>.\nonumber
$$

Учитывая равенство \eqref, это можно преобразовать к виду
$$
r_<1>^<2>=a^<2>-2cx+\fracx^<2>>>=(a-\varepsilon x)^<2>.\nonumber
$$
Так как \(x \leq a\) и \(\varepsilon Утверждение 3.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса \(2a\).

Необходимость. Если мы сложим равенства \eqref почленно, то увидим, что
$$
r_<1>+r_<2>=2a.\label
$$
Достаточность. Пусть для точки \(M(x, y)\) выполнено условие \eqref, то есть
$$
\sqrt<(x-c)^<2>+y^<2>>=2a-\sqrt<(x+c)^<2>+y^<2>>.\nonumber
$$
Возведем обе части равенства в квадрат и приведем подобные члены:
$$
xc+a^<2>=a\sqrt<(x+c)^<2>+y^<2>>.\label
$$
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение \eqref. Мы придем к \(b^<2>x^<2>+a^<2>y^<2>=a^<2>b^<2>\), равносильному уравнению эллипса \eqref.

Рис. 8.4. Фокусы и директрисы эллипса.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса \(\varepsilon\).

Уравнение касательной к эллипсу.

Выведем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть \(M_<0>(x_<0>, y_<0>)\) — точка на эллипсе и \(y_ <0>\neq 0\). Через \(M_<0>\) проходит график некоторой функции \(y=f(x)\), который целиком лежит на эллипсе. (Для \(y_ <0>> 0\) это график \(f_<1>(x)=b\sqrt<1-x^<2>/a^<2>>\), для \(y_ <0>Утверждение 5.

Касательная к эллипсу в точке \(M_<0>(x_<0>, y_<0>)\) есть биссектриса угла, смежного с углом между отрезками, соединяющими эту точку с фокусами.

Рис. 8.5.


источники:

http://allcalc.ru/node/689

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/ellipse/