Найти уравнение нормали к кривой is

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home

Геометрический смысл производной.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Значение производной $f'(x_0)$ функции $y=f(x)$ в точке $x_0$ равно угловому коэффициенту $k=tg\varphi$ касательной $TT’$ к графику этой функции, проведенной через точку $M_0(x_0, y_0),$ где $y_0=f(x_0)$ (геометрический смысл производной).

Прямая $NN’,$ проходящая через точку касания $M_0$ перпендикулярно к касательной, называется нормалью к графику функции $y=f(x)$ в этой точке. Уравнение нормали $$(x-x_0)+f'(x_0)(y-y_0)=0.$$ Уравнение касательной $TT’$ к графику функции $y=f(x)$ в его точке $M_0(x_0, y_0)$ имеет вид $$y-y_0=f'(x_0)(x-x_0)$$

Углом $\omega$ между кривыми $y=f_1(x)$ и $y=f_2(x)$ в их общей точке $M_0(x_0, y_0)$ называется угол между касательными к этим кривым в точке $M_0.$ Его можно вычислить по формуле $$tg\,\omega=\frac<1+f'_1(x_0)f'_2(x_0)>.$$

Примеры.

Написать уравнения касательной и нормали к графику функции $y=f(x)$ в данной точке, если:

5.235. $y=x^2-5x+4,$ $x_0=-1.$

Решение.

Уравнение касательной будем искать по формуле $y-y_0=f'(x_0)(x-x_0);$ уравнение нормали — по формуле $(x-x_0)+f'(x_0)(y-y_0)=0.$

По условию, $x_0=-1. $

$y'(x)=2x-5\Rightarrow y'(x_0)=y'(-1)=2\cdot (-1)-5=-2-5=-7.$

Подставляем все найденные значения в уравнение касательной:

Теперь находим уравнение нормали:

Ответ: У равнение касательной: $7x+y-3=0;$ уравнение нормали: $ x-7y+71=0.$

Решение.

Уравнение касательной будем искать по формуле $y-y_0=f'(x_0)(x-x_0);$ уравнение нормали — по формуле $(x-x_0)+f'(x_0)(y-y_0)=0.$

По условию, $x_0=4. $

Подставляем все найденные значения в уравнение касательной:

$y-2=\frac<1><4>(x-4)\Rightarrow 4(y-2)=x-4\Rightarrow 4y-8=x-4\Rightarrow x-4y+4=0.$

Теперь находим уравнение нормали:

$(x-4)+\frac<1><4>(y-2)=0\Rightarrow 4(x-4)+(y-2)=0\Rightarrow 4x+y-18=0.$

Ответ: У равнение касательной: $x-4y+4=0;$ уравнение нормали: $4x+y-18=0.$

5.241. Написать уравнения касательной и нормали в точке $M_0(2, 2)$ к кривой $x=\frac<1+t>,$ $y=\frac<3><2t^2>+\frac<1><2t>,\,\, t\neq 0.$

Найдем значение $t_0,$ подставляя координаты точки $M_0$ в уравнение кривой: $2=\frac<1+t>,$ $2=\frac<3><2t^2>+\frac<1><2t>.$

$t^2+t-2=0\Rightarrow t_1=1, t_2=-2.$

Подставим полученные решения в равенство $\frac<1+t>=\frac<3><2t^2>+\frac<1><2t>:$

$t_2=-2: \frac<1-2><-8>=\frac<3><8>-\frac<1><4>=\frac<1><8>\neq 2$ — не удовлетворяет нашей системе.

Найдем производную функции, заданной параметрически $y’_x.$

Подставляем все найденные значения в уравнение касательной:

$y-y_0=f'(x_0)(x-x_0)\Rightarrow$ $y-2=\frac<7><10>(x-2)\Rightarrow 10(y-2)=7(x-2)\Rightarrow 10y-20=7x-14\Rightarrow$ $7x-10y+6=0.$

Теперь находим уравнение нормали:

$(x-x_0)+f'(x_0)(y-y_0)=0\Rightarrow$ $(x-2)+\frac<7><10>(y-2)=0\Rightarrow 10(x-2)+7(y-2)=0\Rightarrow 10x+7y-34=0.$

Ответ: У равнение касательной: $7x-10y+6=0;$ уравнение нормали: $10x+7y-34=0.$

Найти углы, под которыми пересекаются заданные кривые:

5.254. $y=x^2$ и $y=x^3.$

Решение.

Найдем координаты точки пересечения заданных кривых. Решаем систему уравнений:

$\left\<\begin y=x^2,\\ y=x^3,\end\right.\Rightarrow$ $\left\<\begin y=x^2,\\ x^2=x^3,\end\right.\Rightarrow$ $\left\<\begin y=x^2,\\ x_1=0\\x_2=1,\end\right.$ Таким образом, кривые пересекаются в точках $M_1(0, 0)$ и $M_2(1, 1).$

Далее найдем значения производных заданых функций в точках пересечения.

Подставляем найденные значения, в формулу нахождения угла:

Ответ: В точке $M_1(0, 0)$ угол равен 0. (т.е. касательные совпадают), в точке $M_2(1, 1)$ угол равен $arctg\frac<1><7>.$

Написать уравнения касательной и нормали к графику функции $y=f(x)$ в данной точке, если:

Ответ: У равнение касательной: $y-5=0;$ уравнение нормали: $x+2=0.$

Ответ: У равнение касательной: $y-2x=0;$ уравнение нормали: $2y+x=0.$

Ответ: У равнение касательной: $x-y-1=0;$ уравнение нормали: $x+y-1=0.$

5.242. Написать уравнения касательных к кривой $$x=t\cos t, \,\,\, y=t\sin t,\,\,\, t\in(-\infty,\,\, +\infty),$$ в начале координат и в точке $t=\pi/4.$

5.244. Написать уравнения касательной к кривой $$x^5+y^5-2xy=0 в точке $M_0(1, 1).$

Найти углы,под которыми пересекаются заданные кривые:

5.260. Найти расстояние от начала координат до нормали к линии $y=e^<2x>+x^2,$ проведенной в точке с абсциссой $x=0.$

Геометрическое применение производной: уравнения касательной и нормали, угол между кривыми

Касательная и нормаль к кривой

Касательная прямая — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.

Прямая, проходящая через точку касания, перпендикулярно касательной, называется нормалью к кривой.

Если кривая определена уравнением $y=f(x)$, то уравнение касательной к ней в точке $M(x_0;y_0)$ имеет вид:

а уравнение нормали:

Задание. Написать уравнение касательной и нормали к кривой $y=x^2-3x+4$ в точке с абсциссой $x_0=0$.

Решение. Находим значение функции в заданной точке:

Далее вычислим значение производной функции в точке $x_0=0$:

а тогда уравнение касательной запишется в виде:

или после упрощения:

$$y-4=-\frac<1><-3>(x-0) \Rightarrow x-3 y+12=0$$

Ответ. Уравнение касательной: $3x+y-4=0$

Уравнение нормали: $x-3y+12=0$

Угол между кривыми

Углом между кривыми на плоскости в их общей точке $M(x_0;y_0)$ называется наименьший из двух возможных углов между касательными к этим кривым в данной точке. Если уравнения касательных, проведенных к кривым $y=f_1(x)$ и $y=f_2(x)$, соответственно $y=k_<1>x+b_<1>$ и $y=k_<2>x+b_2$, то тангенс угла между кривыми определяется соотношением:

Задание. Найти тангенс угла между кривыми $y=x^2-1$ и $y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.

Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:

Таким образом, искомая точка $x=1$.

Далее находим производные заданных функций в найденной точке:

Итак, искомый тангенс:

Ответ. $\operatorname \phi=\frac<1><7>$

Касательная и нормаль к графику функции

Основные формулы

Пусть на некотором интервале X задана функция . Нас интересуют геометрические характеристики графика этой функции в некоторой заданной точке при значении аргумента , где . Пусть функция имеет в производную, которую будем обозначать как . Тогда через точку мы можем провести касательную к графику. Тангенс угла α между осью абсцисс x и касательной равен производной функции в точке :
(1) .
А само уравнение касательной имеет вид:
(2) .
В аналитической геометрии тангенс угла между прямой и осью абсцисс называют угловым коэффициентом прямой. Таким образом производная равна угловому коэффициенту касательной в .
См. Геометрический смысл производной

Прямая, перпендикулярная касательной, проведенной через точку , называется нормалью к графику функции в этой точке. Уравнение нормали имеет вид:
(3) .
См. Уравнение прямой с угловым коэффициентом ⇓

Пусть две кривые и пересекаются в точке . Тогда угол φ между касательными к этим кривым в точке называется углом между кривыми. Он определяется по формуле:
(4) , где .
Отсюда .
при .
Вывод формулы ⇓

Определения

Здесь мы приводим определения, которые встречаются в литературе, и имеют отношение к касательной и нормали. Вывод формул приводится в примере 1 ⇓.

Определение касательной приводится здесь. Уравнение касательной:
.

Касательная TM0, нормаль M0N, подкасательная TP, поднормаль PN. Нормалью к графику функции в точке называется прямая, перпендикулярная касательной, проведенной через эту точку. Уравнение нормали:
.
Отрезком касательной называют отрезок между точкой пересечения касательной с осью абсцисс и точкой .
.
Отрезком нормали называют отрезок между точкой пересечения нормали с осью абсцисс и точкой .
.
Подкасательной называют отрезок между точкой пересечения касательной с осью абсцисс и проекции точки на эту ось.
.
Поднормалью называют отрезок между точкой пересечения нормали с осью абсцисс и проекции точки на эту ось.
.
Углом между кривыми в точке их пересечения называют угол между касательными к кривым, проведенных через точку .

Полезные формулы из аналитической геометрии

Далее приводятся некоторые сведения из аналитической геометрии, которые могут оказаться полезными при решении задач.

Уравнение прямой, проходящей через две заданные точки и :
.
Здесь – направляющий вектор прямой.

Умножив это уравнение на , получим уравнение прямой в другом виде:
.
Здесь – вектор нормали прямой. Тогда само уравнение означает равенство нулю скалярного произведения векторов и .

Уравнение прямой, проходящей через точку параллельно вектору имеет вид:
.
Вектор называется направляющим вектором данной прямой. Это уравнение можно написать в параметрическом виде, введя параметр t :

Уравнение прямой, проходящей через точку перпендикулярно вектору имеет вид:
.
Вектор называется вектором нормали данной прямой.

Уравнение прямой с угловым коэффициентом k , проходящей через точку :
.
Угол α между прямой и осью x определяется по формуле:
.
Если две прямые взаимно перпендикулярны, то их угловые коэффициенты и связаны соотношением:
.

Уравнение прямой в отрезках, пересекающей оси координат в точках :
.

Примеры решения задач

Все примеры Ниже рассмотрены примеры решений следующих задач.
1. Найти уравнения касательной и нормали к кривой в точке . Найти длины отрезков касательной, нормали, подкасательной и поднормали. Решение ⇓
2. Составить уравнения касательной и нормали к циссоиде, заданной в параметрическом виде
, проведенных в точке . Решение ⇓
3. Заданной в неявном виде . Решение ⇓
4. Найти угол между кривыми и Решение ⇓

Пример 1

Составить уравнения касательной и нормали к кривой в точке . Найти длины отрезков касательной, нормали, подкасательной и поднормали.

Находим значение функции при :
.

Находим производную:
.
Находим производную в точке :
;
.

Находим уравнение касательной по формуле (2):
;
;
;
– уравнение касательной.
Строим касательную на графике. Поскольку касательная – это прямая, то нам нужно знать положения двух ее точек, и провести через них прямую.
При ;
при .
Проводим касательную через точки и .

Касательная и нормаль к графику функции y=x 2 в точке M0(1;1).

Найдем угол α между касательной и осью абсцисс по формуле (1):
.
Подставляем :
;
.

Находим уравнение нормали по формуле (3):
;
;
;
;
;
– уравнение нормали.
Строим нормаль по двум точкам.
При ;
при .
Проводим нормаль через точки и .

Находим длину отрезка касательной . Из прямоугольника имеем:
.
Поясним использованную формулу. Поскольку , то . Тогда
.
Подставляем :
.

Находим длину отрезка подкасательной . Из прямоугольника имеем:
.
Подставляем :
.

Находим длину отрезка нормали . Поскольку и , то треугольники и подобны. Тогда . Из прямоугольника имеем:
.
Подставляем :
.

Находим длину отрезка поднормали . Из прямоугольника имеем:
.

Примечание.
При выводе формул, можно сначала определить длины отрезков подкасательной и поднормали, а затем из прямоугольников, по теореме Пифагора, найти длины отрезков касательной и нормали:
;
.

Уравнение касательной: ; уравнение нормали: ;
длина отрезка касательной: ; длина отрезка нормали: ; длина подкасательной: ; длина поднормали: .

Пример 2

Составить уравнения касательной и нормали к циссоиде, заданной в параметрическом виде , проведенных в точке .

Находим значения переменных при .
;
.
Обозначим эту точку как .

Находим производные переменных x и y по параметру t .
;
;
;
;
.

Подставляя , находим производную y по x в точке .
.

Касательная и нормаль к циссоиде в точке (2;2).

Применяя формулу (2), находим уравнение касательной к циссоиде, проходящей через точку .
;
;
;
.

Применяя формулу (3), находим уравнение нормали к циссоиде в точке .
;
;
;
.

Уравнение касательной: .
Уравнение нормали: .

Пример 3

Составить уравнения касательной и нормали к циссоиде, заданной в неявном виде:
(П3) ,
проведенных в точке .

Для получения уравнение касательной и нормали, нам нужно знать значение производной функции в заданной точке. Функция (П3) задана неявно. Поэтому применяем правило дифференцирования неявной функции. Для этого дифференцируем (П3) по x , считая, что y является функцией от x .
;
;
;
.
Отсюда
.

Находим производную в заданной точке, подставляя .
;
.

Находим уравнение касательной по формуле (2).
;
;
;
.

Находим уравнение нормали по формуле (3).
;
;
;
.

Касательная и нормаль к циссоиде изображены на рисунке ⇑.

Уравнение касательной: .
Уравнение нормали: .

Пример 4

Найти угол между кривыми и .

Найдем множество точек пересечения кривых, решая систему уравнений.

Левые части равны. Приравниваем правые части и выполняем преобразования.
;
(П4) .
Поскольку функция строго монотонна, то уравнение (П4) имеет один корень:
.
При . Кривые пересекаются в единственной точке . Обозначим ее как , где .

Введем обозначения для функций, с помощью которых заданы кривые:
.
Найдем их производные.
;
.
Найдем значения производных в точке , подставляя .
;
.

Ниже приводятся графики функций ⇓ и вывод формулы угла между кривыми.

Вывод формулы для угла между кривыми

Изложим вывод формулы (4). Для иллюстрации используем только что рассмотренный пример ⇑, в котором .

Рассмотрим две кривые, заданные уравнениями и , и пересекающиеся в некоторой точке . Докажем, что угол между кривыми определяется по формуле (4):
, где .
Или ;
при .

Проведем касательные к графикам функций в точке . Углы, которые образуют касательные с осью x обозначим как и . За положительное направление выберем направление против часовой стрелки. На рисунке . Считаем, что значения углов принадлежат интервалам . Согласно геометрическому смыслу производной,
.

В аналитической геометрии принято, что угол φ между прямыми равен наименьшему значению угла между ними.
Если , то ;
если , то .
Таким образом величина угла φ между касательными может находиться только в пределах
(Ф2) .

На рисунке угол между лучами и больше 90°, а между лучами и – меньше. Поэтому .

При доказательстве мы будем использовать соотношение:
, которое выполняется при .
Тогда в силу (Ф2),
.
Случай мы рассмотрим отдельно.

1) Пусть .
Тогда угол между прямыми . И мы имеем:
.
В конце мы подставили (Ф1).

2) Пусть .
Тогда ; . Поэтому . Это можно записать так: . Также применим формулу: . В результате получаем:

.

Этот случай изображен на рисунке ⇑.

3) Пусть .
При этом касательные взаимно перпендикулярны, . В этом случае , что указано в (4).

Использованная литература:
П.Е. Данько, А.Г. Попов, Т.Я.Кожевникова. Высшая математика в упражнениях и задачах. Часть 1. Москва, Высшая школа, 1980.
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, Физматлит, 2003.

Автор: Олег Одинцов . Опубликовано: 30-06-2021


источники:

http://www.webmath.ru/poleznoe/formules_8_10.php

http://1cov-edu.ru/mat-analiz/proizvodnaya/kasatelnaya-i-normal-k-grafiku-funktsii/