Найти уравнение прямой через точку параллельно плоскости

Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости онлайн

С помощю этого онлайн калькулятора можно найти уравнение плоскости, проходящей через заданную точку и параллельной данной плоскости. Дается подробное решение с пояснениями. Для нахождения уравнения плоскости, введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости − теория, примеры и решения

Ax+By+Cz+D=0(1)

Наша задача найти уравнение плоскости, проходящей через точку M0 и параллельной плоскости (1)(Рис.1).

Все параллельные плоскости имеют коллинеарные нормальные векторы. Поэтому для построения параллельной к (1) плоскости, проходящей через точку M0(x0, y0, z0) нужно взять в качестве нормального вектора искомой плоскости, нормальный вектор n=(A, B, C) плоскости (1). Далее нужно найти такое значение D, при котором точка M0(x0, y0, z0) удовлетворяла уравнению плоскости (1):

(2)

Решим (2) относительно D:

D=−(Ax0+By0+Cz0)(3)

Подставляя значение D из (3) в (1), получим:

Ax+By+Cz−(Ax0+By0+Cz0)=0(4)

Уравнение (4) можно представить также в следующем виде:

A(xx0)+B(yy0)+C(zz0)=0(5)

Уравнение (5) является уравнением плоскости, проходящей через точку M0(x0, y0, z0) и параллельной плоскости (1).

Найти уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости :

(6)

Запишем коэффициенты нормального вектора плоскости (6):

(7)

Подставляя координаты точки M0 и координаты нормального вектора в (3), получим:

(8)

Подставляя значения A, B, C, D в уравнение плоскости (1), получим:

Уравнение плоскости можно представить в более упрощенном виде, умножив на 4:

Уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости (6) имеет следующий вид:

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Аналитическая геометрия
  • Прямая в пространстве.

Прямая в пространстве, всевозможные уравнения.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Существуют такие формы записи уравнения прямой в пространстве:

1) $\left\<\beginA_1x+B_1y+C_1z+D_1=0\quad (P_1)\\ A_2x+B_2y+C_2z+D_2=0\quad (P_2)\end\right. — $ общее уравнение прямой $L$ в пространстве, как линии пересечения двух плоскостей $P_1$ и $P_2.$

2) $\frac=\frac=\frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $\overline=(m, n, p).$ Вектор $\overline S$ является направляющим вектором прямой $L.$

3) $\frac=\frac=\frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

4) Приравнивая каждую из частей канонического уравнения 2 к прараметру $t,$ получаем параметрическое уравнение прямой:

Расположение двух прямых в пространстве.

Условие параллельности двух прямых: Прямые $L_1$ и $L_2$ параллельны тогда и только тогда, когда $\overline_1\parallel\overline_2\Leftrightarrow$ $\frac=\frac=\frac.$

Условие перпендикулярности двух прямых: $L_1\perp L_2\Leftrightarrow$ $\overline_1\perp\overline_2\Leftrightarrow$ $\cdot+\cdot+p_1\cdot p_2=0.$

Угол между прямыми:

Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.

Пусть прямая $L$ задана уравнением $\frac=\frac=\frac

,$ следовательно $\overline S=(m, n, p).$ Пусть также $M_2=(x_2, y_2, z_2) -$ произвольная точка, принадлежащая прямой $L.$ Тогда расстояние от точки $M_1=(x_1, y_1, z_1)$ до прямой $L$ можно найти по формуле: $$d(M_1, L)=\frac<|[\overline, \overline S]|><|\overline S|>.$$

Примеры.

2.198. Написать каноническое уравнение прямой, проходящей через точку $M_0(2, 0, -3)$ параллельно:

а) вектору $q(2, -3, 5);$

е) прямой $x=-2+t, y=2t, z=1-\frac<1><2>t.$

Решение.

а) Воспользуемся формулой (2) уравнения прямой в пространстве:

$\frac=\frac=\frac

-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $\overline=(m, n, p).$

По условию $M_0(2, 0, -3)$ и $\overline=q(2,-3,5).$

б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой $\frac<5>=\frac<2>=\frac<-1>$ имеет координаты $\overline S(5, 2, -1).$ Далее, находим уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(5, 2, -1)$ как и в пункте а):

в) ось OX имеет направляющий вектор $i=(1, 0, 0).$ Таким образом, ищем уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $i(1, 0, 0):$

д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей , поэтому Направляющий вектор прямой

$\left\<\begin3x-y+2z-7=0,\\ x+3y-2z-3=0; \end\right.$ можно найти как векторное произведение нормалей заданных плоскостей.

Для плоскости $P_1:$ $3x-y+2z-7=0$ нормальный вектор имеет координаты $N_1(3, -1, 2);$

для плосости $P_2:$ $x+3y-2z-3,$ нормальный вектор имеет координаты $N_2(1, 3, -2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $\left\<\begin3x-y+2z-7=0,\\ x+3y-2z-3=0; \end\right.$ имеет координаты $\overline S (-4, 8, 10).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(-4, 8, 10):$

е) Найдем направляющий вектор прямой $x=-2+t, y=2t, z=1-\frac<1><2>t.$ Для этого запишем уравнение этой прямой в каноническом виде:

Отсюда находим направляющий вектор $\overline S\left(1, 2, -\frac<1><2>\right).$ Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): $\overline S_1(2, 4, -1).$

Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $\overline S(2, 4, -1):$

2.199(a). Написать уравнение прямой, проходящей через две заданные точки $M_1 (1, -2, 1)$ и $M_2(3, 1, -1).$

Решение.

Воспользуемся формулой (3) уравнения прямой в пространстве:

$\frac=\frac=\frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$

Подставляем заданные точки:

2.204. Найти расстояние между параллельными прямыми

Решение.

Расстояние между параллельными прямыми $L_1$ и $L_2$ равно расстоянию от произвольной точки прямой $L_1$ до прямой $L_2.$ Следовательно, его можно найти по формуле $$d(L_1, L_2)=d(M_1, L_2)=\frac<|[\overline, \overline S]|><|\overline S|>,$$ где $M_1-$ произвольная точка прямой $L_1,$ $M_2 — $произвольная точка прямой $L_2,$ $\overline S -$ направляющий вектор прямой $L_2.$

Из канонических уравнений прямых берем точки $M_1=(2, -1, 0)\in L_1,$ $M_2=(7, 1, 3)\in L_2,$ $\overline S=(3, 4, 2). $

Отсюда находим $\overline=(7-2, 1-(-1),3-0)=(5, 2, 3);$

Ответ: 3.

2.205 (а). Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $L:$ $\left\<\begin2x-2y+z+3=0,\\ 3x-2y+2z+17=0 \end\right.$

Решение.

Для того, чтобы найти расстояние от точки $A$ до прямой $L,$ нам необходимо выбрать произвольную точку $M,$ принадлежащую прямой $L$ и найти направляющий вектор этой прямой.

Выбираем точку $M.$ Пусть координата $z=0.$ Подставим это значение в данную систему:

Таким образом, $M=(-14, -\frac<25><2>, 0)$

Направляющий вектор найдем, как векторное произведение нормалей заданных плоскостей:

Для плоскости $P_1:$ $2x-2y+z+3=0$ нормальный вектор имеет координаты $N_1(2, -2, 1);$

для плосости $P_2:$ $3x+2y+2z+17=0,$ нормальный вектор имеет координаты $N_2(3, -2, 2).$

Находим векторное произведение:

Таким образом, направляющий вектор прямой $\left\<\begin2x-2y+z+3=0,\\ 3x-2y+2z+17=0 \end\right.$

имеет координаты $\overline S (-2, -1, 2).$

Теперь можно воспользоваться формулой $$d(A, L)=\frac<|[\overline, \overline S]|><|\overline S|>.$$

$\overline=\left(2-(-14),3-\left(-\frac<25><2>\right),-1-0\right)=\left(16, 15\frac<1><2>, -1\right)$

Ответ: $d(A, L)=15.$

2.212. Написать каноническое уравнение прямой, которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $P: 3x-2y-3z-7=0$ и пересекает прямую $L: \frac<3>=\frac<-2>=\frac<2>.$

Решение.

Запишем уравнение плоскости $P_1,$ которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $3x-2y-3z-7=0:$

$P: 3x-2y-3z-7=0\Rightarrow \overline N=(3; -2; -3).$ Искомая плоскость проходит через точку $M_0(3, -2, -4)$ перпендикулярно вектору $\overline N(3, -2, -3).$

$P_1: 3x-9-2y-4-3z-12=0 \Rightarrow$

Далее найдем точку пересечения плоскости $P_1$ и прямой $L.$ Для этого запишем уравнение прямой $L$ в параметрической форме:

Далее, подставим значения $x, y$ и $z,$ выраженные через $t$ в уравнение плоскости $P_1,$ и из полученного уравнения выразм $t:$

Подставляя найденное занчение $t$ в уравнение прямой $L,$ найдем координаты точки пересечения:

Таким образом, прямая $L$ и плоскость $P_1$ пересекаются в точке $M_1(8, -8, 5).$

Теперь запишем уравнение прямой, проходящей через точки $M_0(3, -2. -4)$ и $M_1(8, -8, 5)$— это и будет искомая прямая. Воспользуемся формулой ( 3) $\frac=\frac=\frac :$

2.199.

б) Написать уравнение прямой, проходящей через две заданные точки $M_1 (3, -1, 0)$ и $M_2(1, 0, -3).$

б) Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $ L:$ $\left\<\beginx=3t+5,\\ y=2t,\\z=-2t-25. \end\right.$

2.206. Доказать, что прямые $L_1: \left\<\begin2x+2y-z-10=0,\\ x-y-z-22=0, \end\right.$ и $L_2: \frac<3>=\frac<-1>=\frac<4>.$ параллельны и найти расстояние $\rho(L_1, L_2)$

2.207. Составить уравнения прямой, проходящей через точки пересечения плоскости $x-3y+2z+1=0$ с прямыми $\frac<5>=\frac<-2>=\frac<-1>$ и $\frac<4>=\frac<-6>=\frac<2>.$

2.211. Написать уравнение прямой, проходящей через точку $M_0(7, 1, 0)$ параллельно плоскости $2x+3y-z-15=0$ и пересекающей прямую $\frac<1>=\frac<4>=\frac<2>.$

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

x+y= 1
ab

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x — x 1=y — y 1
x 2 — x 1y 2 — y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >— координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0=y — y 0
lm

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 1 2 — 1 = y — 7 3 — 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x — x 1=y — y 1=z — z 1
x 2 — x 1y 2 — y 1z 2 — z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0=y — y 0=z — z 0
lmn

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений


источники:

http://mathportal.net/index.php/analiticheskaya-geometriya/pryamaya-v-prostranstve

http://ru.onlinemschool.com/math/library/analytic_geometry/line/