Найти уравнение прямой проходящей через фокус параболы

Задача 41920 1. Дан треугольник АВС, в котором.

Условие

1. Дан треугольник АВС, в котором А(6;2), В (2;-3), С (-3;5). Составить уравнение медианы, проведённой из вершины А.

2. Дан эллипс x^2/49 + y^2/24 = 1. Найти эксцентриситет эллипса и его фокусы.

3. Составить уравнение прямой, проходящей через фокус параболы у^2 = 4х перпендикулярно к прямой х-3у+1=0

Решение

Уравнение AМ, как уравнение прямой проходящей через две точки:
[m]\frac-x_>=\frac-y_>[/m]

Умножаем обе части на (-13):

[b]2х-13у+14=0[/b] — уравнение медианы AМ

2.
Каноническое уравнение эллипса
[m]\frac+\frac=1[/m]

Эксцентриситет
ε =с/а=5/7

3.
Каноническое уравнение параболы:
y^2=2px
F(p/2;0)

y^2=4x ⇒ 2p=4 ⇒ [b]p=2[/b]

Произведение угловых коэффициентов взаимно перпендикулярных прямых
k_(1)*k_(2)=-1

x-3y+1=0 запишем в виде y=[m]\frac<1><3>x+\frac<1><3>[/m]

Общий вид прямых перпендикулярных прямой x-3y+1=0

Прямая проходит через фокус параболы, т.е через точку F(1;0)

Составить уравнение прямой проходящей через центр окружности и фокус параболы

Найти расстояние от фокуса параболы x^2+20y=0 до прямой соединяющей центр окружности x^2+y^2=2x с точкой A(0;5)

1. Определить координатф фокуса параболы по известной формуле:

x = — B/2A,
y = — (B^2 — 1)/4A + C.

2. Привести уравнение окружности к каноническому виду и вычислить координаты центра.

3. Зная координаты центра и точки А, найти уравнение прямой, соединяющей центрт окружности и точку А.

4. Зная уравнения прямой, найти расстояние от фокуса до прямой по известной формуле расстояния от точки до прямой.

Возможен второй вариант решения:

После определения координат центра окружности, найти угловой коэффициент прямой соединяющей центр и точку А.
И зная его и координаты фокуса, найти уравнение перпендикуляра к этой прямой и проходящей через фокус.
После нахождения координат точки пересечения прямой и перпендикуляра, находим искомое расстояние.

Все вопросы в агент.,

Какая Вы смешная
И действительно думаете, что здесь будут Вам решать аналитическую геометрию?))

Задача 41918 1. Через точку пересечения прямых.

Условие

1. Через точку пересечения прямых x+2y+2=0 и 3x+4y-6=0 проведен перпендикуляр к прямой 2x+3y-6=0. Написать уравнение этого перпендикуляра.

2. Составить уравнение прямой, проходящей через центр окружности x^2+y^2-2x+4y-10 = 0 и фокус параболы y^2=-8x.

3. Дана гипербола 9x^2-16y^2 = 144. Найти координаты фокусов, уравнения асимптот и эксцентриситет гиперболы.

Кривые второго порядка — определение и построение с примерами решения

Содержание:

Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде

  1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
  2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть (а, b) — решение уравнения F(x,y) = 0.

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

  1. дано уравнение и надо построить фигуру Ф, уравнением которой является ;
  2. дана фигура Ф и надо найти уравнение этой фигуры.

Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

  1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
  2. Записать в координатах условие, сформулированное в первом пункте.

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).

Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b — малой.

Если а =Ь, то уравнение (7.3) можно переписать в виде:

(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением

Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым

Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины и задаются формулами Прямые называются директрисами эллипса. Директриса называется левой, а — правой. Так как для эллипса и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая — правее правой вершины.

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).

Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов обозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А — произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты .

Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим

или

(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.

Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:

и сделаем параллельный перенос по формулам

В новых координатах преобразуемое уравнение примет вид: где р — положительное число, определяется равенством .

Пример:

Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F — фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию, запишем это равенство с помощью координат: , или после упрощения . Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

где коэффициенты А, В и С не равны одновременно нулю

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

которое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число — мень-

шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а — его фокусами (рис. 12).

Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

— каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью

Найдем эксцентриситет эллипса:

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.

В новой системе координат координаты вершин и фокусов гиперболы будут следующими:

Переходя к старым координатам, получим:

Построим график эллипса.

Задача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Кривые второго порядка на плоскости

Уравнение вида Ах 2 +2Вхуу 2 +2Dх+2Еу+F=0 называется общим уравнением кривой второго порядка. Коэффициенты уравнения – действительные числа, причем хотя бы одно из чисел А,В,С отлично от нуля. Такое уравнение определяет на плоскости окружность, эллипс, гиперболу или параболу.

В табл. 2 приведены уравнения кривых второго порядка и определен смысл входящих в них коэффициентов.

№ п/пОпределение кривойВид уравненияПримечание
Эллипс – множество всех точек плоскости, сумма расстояний от которых до двух точек, называемых фокусами, есть величина постоянная (рис.4) — каноническое уравнение эллипса2а – большая ось; 2b – малая ось 2с–межфокус-ное расстояние с 2 =а 2 -b 2 ; — эксцентриси-тет, 0 2 =а 2 +b 2 ; — эксцентри-ситет, e>1. Точки А12 – вершины гиперболы. Прямые — асимптоты
3.Парабола — множество точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директриссой.
Рис.6б 6б 31
х
F
х 2 =2py

у 2 =2px – каноническое уравнение параболы, симметричной относительно оси ОХ x 2 =2 – каноническое уравнение параболы, симметричной относительно оси ОY (рис.6б)F — фокус, ди-ректриса. Точка (0;0) – вершина параболы (рис.6а) F — фокус, ди-ректриса. Точка (0;0) – вершина параболы (рис.6б)

1. Найти координаты фокусов и эксцентриситет эллипса 36х 2 +100у 2 =3600.

Приведем уравнение эллипса к каноническому виду:

36х 2 +100у 2 =3600, поделим обе части уравнения на 3600:

, a 2 =100, b 2 =36.

С= .

Эксцентриситет: .

Ответ: Fл(-8,0); Fп(8,0); =0,8.

2.Написать уравнение прямой, проходящей через левую вершину эллипса 16х 2 +25у 2 =400 и точку М0(1;-3) (рис.7).

у

Решение:

-4
-5
М
х
М0
Рис. 7

Приведем уравнение 16х 2 +25у 2 =400 к каноническому виду.

, a 2 =25, b 2 =16.

Левая вершина эллипса (-а,0)Þ(-5,0). Обозначим М(-5,0). Составим уравнение прямой, проходящей через точки М0 и М:

.

Ответ: .

3. Написать уравнение прямой, проходящей через правый фокус гиперболы 9х 2 -16у 2 =144 и параллельно прямой 3х-2у+6=0 (рис.8).

-3
-4
FП
х
у
Рис.8

Приведем уравнение 9х 2 -16у 2 =144 к каноническому виду , a 2 =16, b 2 =9.

Правый фокус гиперболы Fп(с,0);

С= .

Пусть уравнение искомой прямой имеет вид y=k2x+b2;

Значит, y=(3/2)x+b2 проходит через точку Fп(5,0), то 0=(3/2)5+b2Þb2=-15/2. Итак, Û3x-2у-15=0.

Искомая прямая проходит через точку Fл(5,0) параллельно прямой 3х-2у+6=0. Из общего уравнения заданной прямой определяем вектор нормали , который будет являться нормалью и для параллельной ей искомой прямой. Пользуемся уравнениемА(х-х0)+В(у-у0)=0, 3(х-5)-2(у-0)=0, 3х-2у-15=0.

4. Написать уравнение прямой l, проходящей через нижнюю вершину эллипса 4х 2 +20у 2 =80, перпендикулярно прямой 2ху+1=0 (рис.9).

М
-2
y
l
х
Рис. 9

Приведем уравнение к каноническому виду 4х 2 +20у 2 =80,

, a 2 =20, b 2 =4.

Нижняя вершина имеет вид: М(0;-b)=М(0;-2).

Условие перпендикулярности двух прямых: k1k3=-1.

k2=-1: k1Þk2=-1/2,

Так как прямая проходит через точку М(0;-2), то .

Итак, Þх+2у+4=0.

По условию задачи требуется написать уравнение прямой l, проходящей через точку М(0;-2) перпендикулярно прямой 2ху+1=0. Из общего уравнения прямой определяем координаты вектора нормали . Несложно представить (рис.9), что если искомая прямая l перпендикулярна заданной, то вектор параллелен искомой прямой, т.е. является ее направляющим вектором. Используя уравнение прямой, проходящей через точку М0(х0,у0) параллельно вектору , получим:

. У нас ; ;

5. Написать уравнение прямой, проходящей через правый фокус эллипса под углом 45˚ к оси Ох.

Правый фокус эллипса имеет вид Fп(с,0);

С= .

Так как прямая проходит под углом 45˚ к оси Ох, то k=tgα=tg45˚=1.

Пусть уравнение искомой прямой имеет вид: y=kx+b;

Так как прямая проходит через точку Fп(3,0), то 0=3+bÞb=-3.

Плоскость в пространстве

Любое уравнение первой степени в трехмерном пространстве определяет какую-либо плоскость.

Разным способам задания плоскости соответствуют различные виды уравнений (табл. 3.)

№ п/пВид уравненияСмысл входящих в уравнение коэффициентовПримечание
Уравнение плоскости, проходящей через данную точку перпендикулярно заданному вектору А(х-х0)+В(у-у0)+С(z-z0)=0(x0,y0,z0) – координаты заданной точки; АВС – координаты заданного вектораВектор N(А,В,С) называется нормальным вектором плоскости
Общее уравнение плоскости Ахуz+D=0D=-Ax0-By0-Cz0, АВС – нормальный вектор плоскости;Это уравнение получается из уравнения (1) эле-ментарными
№ п/пВид уравненияСмысл входящих в уравнение коэффициентовПримечание
х0,y0,z0 – координаты данной точкипреобразованиями
Уравнение плоскости, проходящей через три заданные точки М1(х1,y1,z1), М2(х2,y2,z2), М3(х3,y3,z3) – три точки, заданные своими координатамиТочки М1, М2, М3 не должны лежать на одной прямой
Уравнение плоскости в отрезках на осях а,b,c – отрезки, отсекаемые плоскостью от осей координатаbc≠0

Пусть даны две плоскости a1 и a2:

Угол между двумя плоскостями определяется как .

Условие перпендикулярности двух плоскостей:

=0, то есть =0.

Условие параллельности двух плоскостей:

или .

Расстояние от точки до плоскости:

,


источники:

http://b4.cooksy.ru/articles/sostavit-uravnenie-pryamoy-prohodyaschey-cherez-tsentr-okruzhnosti-i-fokus-paraboly

http://lektsii.org/16-16768.html