Найти уравнения сторон квадрата по вершине

Задача 34286 Пусть прямая l1(4x–y+1=0) одна из.

Условие

Пусть прямая l1(4x–y+1=0) одна из сторон квадрата, а точка M(1;2) его вершина. Составить уравнение остальных сторон квадрата

Решение

Расстояние d от точки M(1;2) до прямой 4х-у+1=0
это длина стороны квадрата

Уравнение прямой 4x-y+1=0 можно записать
y=4x+1
k=4
k=tg α ;
Значит прямая c угловым коэффициентом 4 — это диагональ прямоугольника, размеры 1 × 4 ( длина 1, высота 4: tgα=4/1)

Параллельная ей прямая проходит через точку М
k=4
y=4x+m
Чтобы найти m подставляем координаты точки M
2=4*1+m
m=-2

Перпендикулярная ей прямая имеет угловой k=-1/4
(потому что произведение угловых коэффициентов взаимно перпендикулярных прямых равно (-1))

Чтобы найти b подставляем координаты точки M
2=(-1/4)*1+b
b=2 целых 1/4

[b]y=(-1/4)x + 2 целых 1/4⇒ 4y+x-9=0[/b]

Третья сторона имеет угловой коэффициент k=(-1/4) и находится на расстоянии 3/sqrt(17) от точки M (1;2)

9-4n=-3 или 9-4n=3
n=3 или n=3/2
[b]4y+x-12 =0[/b] или [b]4y+x-6=0[/b]

О т в е т. [b]y=4x-2[/b]; [b]4y+x-9=0[/b]; [b]4y+x-12 =0[/b] (или [b] 4y+x-6=0[/b])

Найти уравнения сторон квадрата по вершине

Даны две противоположные вершины квадрата A(2, 1) и C(4, 5). Найти две другие.

Надо найти числа x2, y2 и x4, y4. Для определения каждой пары этих чисел необходимы два уравнения, связывающие их.

Первое из них найдем, определив расстояние AB и приравняв его к расстоянию BC (AB = BC, так как стороны квадрата равны между собой):

Отсюда следует, что

Возводя обе части этого равенства в квадрат, после упрощений получим первое уравнение, связывающее x2 и y2, x2 + 2y2 = 9.

Раздел 1

Задача. Пусть точка А(1; 3) — вершина квадрата ABCD, а его диагональ BD лежит на прямой х + 2у — 12 = 0. Найти:

а) координаты вершин В, С и D;

b) уравнения сторон АВ, ВС, CD и AD.

Указание. Из школьного курса геометрии известны следующие свойства диагоналей квадрата, которые будут использованы при решении этой задачи.

Диагонали квадрата: 1) взаимно перпендикулярны; 2) делятся точкой своего пересечения — центром квадрата — пополам; 3) равны.

Решение: 1. Найдем уравнение прямой, на которой лежит АС — вторая диагональ квадрата. Вспомним, что уравнение любой невертикальной прямой может быть приведено к виду у = kx + b, где параметр k — угловой коэффициент этой прямой.

В силу свойства диагоналей квадрата угловые коэффициенты =-0,5 и kBD прямых АС и BD связаны соотношением

Найдем угловой коэффициент kBD. Для этого выразим у через х из данного уравнения прямой BD: 2у = — х + 12, откуда у =-0,5 х + 6. Итак, kBD =-0,5. Поэтому из соотношения (1) получим, что kAC=2.

Теперь уже легко найти уравнение прямой АС. Нам известны координаты ее точки А и угловой коэффициент kAC. Используем уравнением прямой, проходящей через данную точку в данном направлении:

Подставим в это уравнение числовые данные нашей задачи: xA = 1, уА = 3, kAC=2. Получим у — 3 = 2(х — 1) или (после упрощений)

AC: у = 2х + 1.

2. С помощью свойства 2) диагоналей квадрата найдем координаты центра Е квадрата — точки пересечения его диагоналей.

Поскольку точка Е лежит на диагонали АС, ее координаты удовлетворяют уравнению прямой АС; аналогично рассуждая, получим, что координаты точки Е должны одновременно удовлетворять и уравнению прямой BD. Таким образом, координаты точки Е должны удовлетворять системе из уравнений прямых АС и BD

(первое — уравнение прямой АС, второе — прямой BD).

Далее, вычитая второе уравнение из первого, получим: 0=2,5x-5. Значит х = 2. Подставим найденное значение х в любое из уравнений системы, например, в первое. Найдем, что у = 5.

Итак, мы нашли координаты точки Е, центра квадрата: хЕ = 2, уЕ = 5, т.е. Е(2; 5).

3. Найдем длину отрезка АЕ — половину диагонали квадрата, а затем воспользуемся тем, что и остальные вершины квадрата находятся от его центра E на таком же расстоянии (свойства 2) и 3) диагоналей), т.е. что все вершины квадрата лежат на окружности радиуса АЕ с центром в точке Е

B
A

Подставив в правую часть этой формулы числовые значения координат точек А и Е, получим, что

Уравнение окружности радиуса АЕ с центром в точке Е записывается в виде

Подставив в него числовые значения радиуса АЕ и координат центра Е, получим уравнение окружности, проходящей через все вершины квадрата:

Теперь с помощью простого рассуждения находим по очереди координаты всех вершин квадрата.

Точки А и С лежат на пересечении найденной окружности и прямой АС, это общие точки указанных окружности и прямой. Значит, координаты этих точек — решения системы уравнений окружности и прямой:

Координаты вершины А мы знаем, поэтому будем искать вершину С.

Подставим во второе уравнение системы вместо у его выражение 2х + 1 из первого уравнения. Получим:

(х — 2) 2 + (2х + 1 — 5) 2 = 5,

откуда (х — 2) 2 + (2х — 4) 2 = 5, поэтому (х — 2) 2 + 4(х — 2) 2 = 5, т.е. 5(х — 2) 2 = 5, значит (х — 2) 2 = 1. Если квадрат числа равен 1, это число равно либо 1, либо (-1). Поэтому х — 2 = 1 и тогда х = 3, либо х — 2 = -1 и тогда х = 1.

Во втором случае мы получили известную нам абсциссу вершины А (а из первого уравнения системы получим ординату этой вершины), а первый случай дает нам абсциссу вершины С: хС = 3. Тогда из первого уравнения системы найдем ординату вершины С: уС = 2×3 + 1 = 7. Итак, найдена вершина С(3; 7).

Аналогично, для нахождения координат вершин В и D надо решить систему, состоящую из уравнений прямой BD и той же окружности:

Выразим из первого уравнения х через у: х = 12 — 2у.и подставим полученное выражение во второе уравнение системы. Получим (аналогично решению предыдущей системы) 4(у — 5) 2 + (у — 5) 2 = 5, откуда либо у — 5 = 1 и тогда у = 6, либо у — 5 = -1 и тогда у = 4.

При у = 6 первое уравнение системы дает х = 12 — 2у = 12 — 12 = 0, а при у= 4 аналогично получаем, что х = 4.

Итак, получены два решения системы, пары (0; 6) и (4; 4). Одно из этих решений — координаты точки В, а второе — точки D. Поскольку обе эти вершины совершенно равноправны, мы можем любую из них обозначить буквой В, тогда вторая будет вершиной D. Вся разница в том, идут ли вершины А, В, С и D в порядке обхода контура квадрата по или против часовой стрелки, что для решения нашей задачи безразлично; просто надо выбрать одно из этих направлений произвольно.

Мы будем считать, что вершины квадрата таковы: B(0; 6); D(4; 4).

4. Нам осталось найти уравнения сторон квадрата. Для этого вспомним уравнение прямой, проходящей через точки М(хМ; уМ) и N(xN; yN):

(2)

и подставим в него координаты соответствующих вершин квадрата.

Уравнение прямой АВ получим, если в формуле (2) вместо точек М и N возьмем точки А и В:

.

Подставляя в это уравнение координаты вершин А(1; 3) и В(0; 6), находим:

или y-3=-3(x-1), откуда y=-3x+6.

Аналогично получаем уравнения других сторон. Теперь можно сделать чертеж.

Ответ: а) В(0; 6); С(3; 7); D(4; 4);

BC:

DA:

Замечание. Если иначе выбрать точки B и D (cм. п.3 решения), в ответе надо поменять местами: в п. а) — координаты точек В и D; в п. b) — уравнения прямых АВ и CD, а также уравнения прямых ВС и CD.

Дата добавления: 2014-12-02 ; просмотров: 1391 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://www.pm298.ru/reshenie/l23vel.php

http://helpiks.org/1-18451.html