Найти уравнения вертикальных и наклонных асимптот онлайн

Найти наклонные асимптоты функции онлайн

Прямая y = k x + b является наклонной асимптотой функции f ( x ) , если выполняется условие:

Исходя из приведенного выше условия, можно определить коэффициенты k и b наклонной асимптоты функции f ( x ) :

Таким образом, прямая y = k x + b является наклонной асимптотой функции f ( x ) тогда и только тогда, когда существуют конечные пределы

Для нахождения наклонных асимптот своей функции воспользуйтесь нашим бесплатным онлайн калькулятором, построенные на основе системы Wolfram Alpha.

Асимптоты

п.1. Понятие асимптоты

Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:


Вертикальная асимптота x=3

Горизонтальная асимптота y=1

Наклонная асимптота y=x

п.2. Вертикальная асимптота

Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).

Например:
Исследуем непрерывность функции \(y=\frac<1><(x-1)(x+3)>\)
ОДЗ: \(x\ne \left\<-3;1\right\>\)
\(\left\\notin D\) — точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем \(x_0=-3\). Найдем односторонние пределы: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-3-0-1)(-3-0+3)>=\frac<1><-4\cdot(-0)>=+\infty\\ \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-3+0-1)(-3+0+3)>=\frac<1><-4\cdot(+0)>=-\infty \end Односторонние пределы не равны и бесконечны.
Точка \(x_0=-3\) — точка разрыва 2-го рода.
Исследуем \(x_1=1\). Найдем односторонние пределы: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(1-0-1)(1-0+3)>=\frac<1><-0\cdot 4>=-\infty\\ \lim_\frac<1><(x-1)(x+3)>=\frac<1><(1+0-1)(1+0+3)>=\frac<1><+0\cdot 4>=+\infty \end Односторонние пределы не равны и бесконечны.
Точка \(x_1=1\) — точка разрыва 2-го рода.
Вывод: у функции \(y=\frac<1><(x-1)(x+3)>\) две точки разрыва 2-го рода \(\left\\), соответственно – две вертикальные асимптоты с уравнениями \(x=-3\) и \(x=1\).

п.3. Горизонтальная асимптота

Число горизонтальных асимптот не может быть больше двух.

Например:
Исследуем наличие горизонтальных асимптот у функции \(y=\frac<1><(x-1)(x+3)>\)
Ищем предел функции на минус бесконечности: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(-\infty)(-\infty)>=+0 \end На минус бесконечности функция имеет конечный предел \(b=0\) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: \begin \lim_\frac<1><(x-1)(x+3)>=\frac<1><(+\infty)(+\infty)>=+0 \end На плюс бесконечности функция имеет тот же конечный предел \(b=0\) и также стремится к нему сверху.
Вывод: у функции \(y=\frac<1><(x-1)(x+3)>\) одна горизонтальная асимптота \(y=0\). На плюс и минус бесконечности функция стремится к асимптоте сверху.

Итоговый график асимптотического поведения функции \(y=\frac<1><(x-1)(x+3)>\):

п.4. Наклонная асимптота

Число наклонных асимптот не может быть больше двух.

Чтобы построить график асимптотического поведения, заметим, что у функции \(y=\frac\), очевидно, есть вертикальная асимптота x=1. При этом: \begin \lim_\frac=-\infty,\ \ \lim_\frac=+\infty \end

График асимптотического поведения функции \(y=\frac\):

п.5. Алгоритм исследования асимптотического поведения функции

На входе: функция \(y=f(x)\)
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.

п.6. Примеры

Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) \( y=\frac<4x> \)
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: \(x=\pm 1\)
Односторонние пределы в точке \(x=-1\) \begin \lim_\frac<4x><(x+1)(x-1)>=\frac<4(-1-0)><(-1-0+1)(-1-0-1)>=\frac<-4><-0\cdot(-2)>=-\infty\\ \lim_\frac<4x><(x+1)(x-1)>=\frac<4(-1+0)><(-1+0+1)(-1+0-1)>=\frac<-4><+0\cdot(-2)>=+\infty \end Точка \(x=-1\) — точка разрыва 2-го рода
Односторонние пределы в точке \(x=1\) \begin \lim_\frac<4x><(x+1)(x-1)>=\frac<4(1-0)><(1-0+1)(1-0-1)>=\frac<4><2\cdot(-0)>=-\infty\\ \lim_\frac<4x><(x+1)(x-1)>=\frac<4(1+0)><(1+0+1)(1+0-1)>=\frac<4><2\cdot(+0)>=+\infty \end Точка \(x=1\) — точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты \(x=\pm 1\)

График асимптотического поведения функции \(y=\frac<4x>\)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: \begin b_1=\lim_e^<\frac<1>>=e^0=1\\ b_2=\lim_e^<\frac<1>>=e^0=1\\ b=b_1=b_2=1 \end Функция имеет одну горизонтальную асимптоту \(y=1\). Функция стремится к этой асимптоте на минус и плюс бесконечности.

График асимптотического поведения функции \(y=e^<\frac<1>>\)

в) \( y=\frac \)
Заметим, что \( \frac=\frac<(x+1)(x-1)>=\frac<(x^2)(x+1)><(x+1)(x-1)>=\frac \) $$ y=\frac\Leftrightarrow \begin y=\frac\\ x\ne -1 \end $$ График исходной функции совпадает с графиком функции \(y=\frac\), из которого необходимо выколоть точку c абсциссой \(x=-1\).

3) Наклонные асимптоты
Ищем угловые коэффициенты: \begin k_1=\lim_\frac=\left[\frac<\infty><\infty>\right]=\lim_\frac\right)>=\frac<1+0><1-0>=1\\ k_2=\lim_\frac=\left[\frac<\infty><\infty>\right]=\lim_\frac\right)>=\frac<1+0><1-0>=1\\ k=k_1=k_2=1 \end У функции есть одна наклонная асимптота с \(k=1\).
Ищем свободный член: \begin b=\lim_(y-kx)= \lim_\left(\frac-2\right)= \lim_\frac= \lim_\frac=\left[\frac<\infty><\infty>\right]=\\ =\lim_\frac=\frac<1+0><1-0>=1 \end Функция имеет одну наклонную асимптоту \(y=x+1\).
График асимптотического поведения функции \(y=\frac\)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: \begin b_1=\lim_xe^<\frac<1><2-x>>=-\infty\cdot e^0=-\infty\\ b_2=\lim_xe^<\frac<1><2-x>>=+\infty\cdot e^0=+\infty \end Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

График асимптотического поведения функции \(y=xe^<\frac<1><2-x>>\)

Найти уравнения вертикальных и наклонных асимптот онлайн

Наш калькулятор позволяет исследовать график функции. Но пока что нет возможности находить область определения функции

Что умеет находить этот калькулятор:

  • Область определения функции: Да. Умеет определять только точки, в которых знаменатель функции обращается в нуль, но в остальных случаях:
  • Умеет определять точки пересечения графика функции с осями координат: Да
  • Экстремумы функции: интервалы (отрезки) возрастания и убывания функции: Да
  • Точки перегибов графика функции: перегибы: интервалы выпуклости, вогнутости (впуклости): Да
  • Вертикальные асимптоты : Да (это завязано с областью определения функции, на точки, где знаменатель функции обращается в нуль)
  • Горизонтальные асимптоты графика функции: Да
  • Наклонные асимптоты графика функции: Да
  • Четность и нечетность функции: Да

Правила ввода выражений и функций

3.14159.. e Число e — основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

© Контрольная работа РУ — калькуляторы онлайн


источники:

http://reshator.com/sprav/algebra/10-11-klass/asimptoty/

http://www.kontrolnaya-rabota.ru/s/grafik/issledovanie/