Найти все действительные решения уравнения

Найти все действительные решения уравнения

* Entering and Manipulating Equations: The lhs and rhs commands *

Напомним, что уравнению, точно так же как и выражению, можно присвоить имя. В следующей командной строке мы введём уравнение и присвоим ему имя » eq1 » :

Мы можем вывести на экран левую и правую части уравнения по-отдельности при помощи команд lhs и rhs :

Воспользуемся командами lhs и rhs для того, чтобы привести уравнение к стандартному виду, в котором все члены собраны слева, а справа остался только 0:

04. 02 Нахождение точных корней. Команда solve

* Finding Exact Solutions: The solve command *

Рассмотрим вначале рациональные уравнения. Известно, что существуют алгоритмы определения точных корней рациональных корней вплоть до 4-го порядка включительно. В Maple-команду solve и заложены эти алгоритмы.

Воспользуемся командой solve для нахождения точных корней кубического уравнения :

Обратите внимание: в команде мы указываем, относительно какой переменной следует решать уравнение. Хотя в нашем конкретном случае это и не обязательно:

Maple нашел все 3 действительных корня и вывел их ( в неупорядоченном виде ).

Иногда очень важно выбрать конкретный корень, чтобы потом использовать в дальнейших преобразованиях именно его. Для этого заранее следует присвоить имя результату исполнения команды solve . Назовём его X . Тогда конструкция X[1] будет соответствовать первому корню из списка (подчеркнем: это не обязательно меньший корень! ), X[2] — второму корню, и т.д. ( Скобки — квадратные! ):

Посмотрите, однако, что будет выведено в результате выполнения похожей команды:

Ещё раз подчеркнём: практика показывает, что уравнению целесообразно присвоить имя. Традиционно в Maple такое имя начинается с букв eq :

(Не путать оператор присваивания » := » со знаком равенства » = » !)

Теперь решим уравнение при помощи команды solve . Множеству корней присвоим имя X :

Для убедительности проверим, нет ли среди найденных корней посторонних. Проверку выполним непосредственной подстановкой

Разумеется, частенько «точные» решения довольно громоздки, если не сказать иначе. Например, это касается уравнения :





Теперь Вам понятно, о чем речь? Для себя заметьте, что мнимая единица в Maple обозначается посредством прописной буквы I . Разумеется, в таких случаях не грех найти приближенные значения корней. Имея на руках точное решение, Вы и сами сообразите, как это сделать:

В подобных ситуациях хорошей альтернативой команде solve является fsolve , особенности которой будут рассмотрены в следующем параграфе.

Команда solve используется при отыскании точных решений не только рациональных уравнений. Ниже приведено несколько тому иллюстраций. Но для многих типов иррациональных, показательных, логарифмических, тригонометрических и даже рациональных уравнений точное решение искать бесполезно. На помощь призывается команда fsolve .

Решим уравнение :

Иногда (а в тригонометрии — всегда ) Maple, по умолчанию , не выводит всё множество корней:

Но безвыходных ситуаций не бывает! Взяв за основу полученный результат, воспользуйтесь своими знаниями тригонометрических уравнений и запишите полное решение ( как ? ).

Упражнение 4.1

Решить уравнение Разберитесь, сколько различных корней имеет уравнение. Как Maple поступает при наличии равных корней?

Совет : разложите на множители левую часть уравнения.

Корень х = 7 является двукратным, а потому у кубического уравнения только два различных корня. Разложение на множители левой части уравнения — тому подтверждение.

04. 03 Поиск приближенных корней. Команда fsolve

* Finding Approximate Solutions: The fsolve command *

Для приближенного решения уравнений используется Maple-команда fsolve . В случае рационального уравнения, fsolve выводит весь список действительных корней (см. Пример 01). Для трансцендентных уравнений эта команда, по умолчанию, выводит только один корень (см. Примеры 02 и 03).

При помощи fsolve найдём приближенные значения сразу всех четырёх действительных корней рационального уравнения :

Эти четыре корня и составляют исчерпывающее решение исходного рационального уравнения ( хотя и приближенное ).

Используя команду fsolve , найти хотя бы один действительный корень уравнения :

Maple и вывел только один корень. На этот раз Maple не стал «живописать». Как теперь убедиться в том, что других действительных корней нет? Следующий пример даёт такой инструментарий.

Получить все действительные корни уравнения и убедиться в этом.

Шаг первый ( Основная идея ) : найдём графическое решение уравнения. Для этого построим график функции, стоящей в левой части уравнения. Абсциссы точек пересечения этого графика с осью Ох и будут искомыми корнями.

Т.к. мы умело подобрали диапазоны изменений абсцисс и ординат точек графика, то легко обнаружим 4 точки пересечения линии с осью Ох. Одна из них соответствует корню, найденному в Примере 02 ( какая именно? ).

Второй корень очевиден: х = 0. А как поточнее найти остальные?

Шаг второй ( Уточнение ) : применим команду fsolve более «зряче». В Maple предусмотрена возможность указания промежутка, на котором отыскиваются корни. В частности, для определения отрицательного корня нашего уравнения, укажем, что поиски следует вести в «районе» [-1;-0.2]. Об этом красноречиво свидетельствует графическое решение.

Оставшиеся корни явно принадлежат промежуткам [1;2] и [4;5] . Расскажем об этом команде fsolve :

Ну а что произойдёт, если мы подсунем Maple «пустой участок»? Например, отрезок [2;4] для нашего уравнения. Там графического решения явно нет:

Maple выдаёт название команды, само уравнение, имя аргумента и отрезок. Т.е. ничего нового. Мол: «Ищите корни сами, а я не нашел».

Шаг третий ( Дополнительный анализ ) : Как теперь удостовериться в том, что найдены все корни , а не только в видимой области графического решения? Для этого следует расширить интервал поисков:

Новых точек пересечения нет. В конце концов мы понимаем, что экспоненциальное слагаемое на границах промежутка вносит самый существенный вклад в величину функции из левой части уравнения. Значения функции в этой области стремятся к , а потому дополнительных корней нам не найти.

Попробуем в других местах: справа и слева от области найденных корней.

И здесь ни одного дополнительного корня! Поняв, что с влиянием показательной части уравнения всё ясно, делаем окончательные выводы.

Исчерпывающее решение уравнения состоит из четырёх корней: -.8251554597 , 0 , 1.545007279 , 4.567036837 .

Применим команду fsolve для приближенного решения трансцендентного уравнения .

Как и в предыдущем случае, найдём вначале качественное графическое решение. Для этого ещё нужно угадать, как разбросать по обеим частям уравнения его члены. Но графические возможности Maple настолько великолепны, что почти всегда можно собирать все члены уравнения с одной стороны.

Рассмотрим уравнение, равносильное данному: . Абсциссы точек пересечения графика функции, стоящей в левой части уравнения, с осью Ох и будут искомыми корнями.

График указывает область поисков корней: промежуток [1;2]. Настаёт черёд команды fsolve :

Корень найден. Но, очевидно, он — не единственный. Расширьте область поисков и ещё раз примените команду fsolve для отыскания второго корня.

Упражнение 4.2

Найти все действительные корни уравнения , начав с графического решения.

Построим график левой части уравнения:

В результате находим корни уравнения в первом приближении: -2 ; -1.5 ; 0 . Применим теперь команду fsolve без указания диапазона поиска ( оценим возможности Maple ):

С удовлетворением отмечаем, что Maple выводит все три корня (Не будем забывать, что решали рациональное уравнение.)

Упражнение 4.3

Найти все корни уравнения . Воспользуйтесь графическим решением. Проверьте каждый корень непосредственной подстановкой.

Приведём уравнение к стандартному (для этого раздела) виду:

Теперь построим график левой части уравнения:

По всей видимости, существует два корня. Один примерно равен -2, а другой, похоже, 2.

Применим команду fsolve , ограничив диапазон поиска:

Непосредственной подстановкой проверим корни:

Обратите внимание: в обоих случаях истинного равенства нет . С учётом ошибок при округлении, разумное расхождение вполне допустимо .

Убедитесь в отсутствии других корней. Ответ обоснуйте.

Упражнение 4.4

Графики функций и дважды пересекаются на отрезке [-5;5].

а). Постройте в одной системе координат графики обеих функций и при помощи мыши найдите координаты точек пересечения.

b). Составьте уравнение, корнями которого являются абсциссы точек пересечения графиков.

c). Используйте команду fsolve для решения этого уравнения.

d). Используйте результаты из пункта с) для оценки ординат точек пересечения графиков.

e). У Вас не создалось впечатление, что линии могут пересекаться и в третьей точке с координатами (1;9)? Используйте fsolve и графические возможности Maple, чтобы убедиться в противном.

Найти действительные решения уравнения (3+i)x+(-5+2i)y=4+16i

4. Найти действительные решения уравнения (3+i)x+(-5+2i)y=4+16i.

Решение: (3x-5y)+i(x+2y)=4+16i

3x-5y=4

5. Доказать тождество |z1+z2| 2 +|z1-z2| 2 =2(|z1| 2 +|z2| 2 ) и вычислить его геометрический смысл.

Геометрический смысл: сумма квадратов длин диагоналей равна сумме квадратов всех сторон параллелограмма.

6. Найти геометрическое место точек:

1) (2x-z) 2 +(2x-z) 2 = 4x 2 -4xz+z 2 +4x 2 -4xz+z 2 =8x 2 -4x(z+z)+z 2 +z 2 =8x 2 -4x2x+(z+z) 2 —

-2zz=(2x) 2 -2|z| 2 =4x 2 -2(x 2 +y 2 )=2(x 2 +y 2 )=2Re(z 2 ).

2) 2Re(z 2 )=2Re(x+iy) 2 =2Re(x 2 -y 2 +2ixy)=2(x 2 -y 2 ).

8. Решить систему уравнений

(3-i)z1-(4+2i)z2=1+3i;

Решение: Применим правило Крамера:

∆= (3-i)-(4+2i) =(2+3i)(3-i)+(4+2i) 2 =21+23i

z1= (1+3i)-(4+2i) =(2+6i+3i-9)+28+14i =21+23i

z2= (3-i) (1+3i) =21-7i-4-2i-12i+6 =23-21i

Z1= 21+23i =1; z2= 23-21i =-i(21+23i) =-i

21+23i 21+23i 21+23i

9. Доказать, что (а 2 +1)(b 2 +1)(c 2 +1) можно представить в виде суммы квадратов целых чисел (a,b,c – целые числа).

Доказательство: заметим, что а 2 +1=|a+i| 2 , тогда имеем: (а 2 +1)(b 2 +1)(c 2 +1)=(a+i)(a-i)(b+i)(b-i)(c+i)(c-i)=(a+i)(b+i)(c+i)(a+i)(b+i)(c+i)= =((ab-1)+i(a+b))(c+i)((ab-1)+i(a+b))(c+i)=(((ab-1)c-a-b)+i((a+b)c+ab-1))((ab-1)c-a-b+i((a+b)c+ab-1)=(abc-(a+b+c)) 2 +(ab+bc+ca-1) 2 .

Решение: найдем сумму σ=с+iS=(e iφ +e 2 iφ +…+e inφ ) и выделим действительную и мнимую ее части, т.е. С=Reσ; S=Imσ. Последовательно имеем: e iφ +e 2 iφ +…+e inφ = e iφ ((1- e inφ )/(1- e iφ ))= (e iφ (1- e inφ ) (1- e — iφ ))/( (1- e iφ ) (1- e — iφ ))= =(e iφ -1- e iφ ( n +1) + e inφ )/|1- e iφ | 2 .

Поскольку |1- e iφ | 2 =|(1-cosφ)-isinφ| 2 =(1-cosφ) 2 +sin 2 φ=4sin 2 (φ/2);

Re(e iφ -1- e iφ(n+1) + e inφ )= cosφ-1-cos(n+1)φ+cosnφ= =- 2sin 2 (φ/2)+2sin(φ/2)sin(nφ+φ/2)= 2sin(φ/2)2sin(nφ/2)cos((n+1)φ)/2 и Im(e iφ -1- e iφ(n+1) + e inφ )=sinφ-sin(n+1)φ+sinnφ=2sin(φ/2)(cos(φ/2)-cos(nφ+φ/2))= =2sin(φ/2)2sin(nφ/2)sin(((n+1)φ)/2), то С=(4sin(φ/2)sin(nφ/2)cos(((n+1)φ)/2))/(4sin 2 (φ/2)) = =[sin(nφ/2) cos(((n+1)φ)/2))]/ sin(φ/2);

S=(4sin(φ/2)sin(nφ/2)cos(((n+1)φ)/2))/(4sin 2 (φ/2)) = =[sin(nφ/2) cos(((n+1)φ)/2))]/ sin(φ/2)

11. Найти сумму 1+e π cosπ+e 2π cos2π+…+e nπ cosnπ.

Решение: Рассмотрим функцию

S(x)=1+e x cosx+e 2 x cos2x+…+e nx cosnx и найдем ее значение при х=π.

В свою очередь, при нахождении суммы S(x) перейдем к комплексным числам:

σ(z)=1+e x+ix +e 2x+i2x +…+e nx+inx = 1+e x(1+i) +e 2x(1+i) +…+e nx(1+i) =(1-( e x(1+i) ) n+1 )/(1- e x(1+i) )= =1-e x(n+1)(1+i) /(1-e x(1+i) )=((1-e x(n+1)(1+i) )(1-e x(1-i) )/((1-e x(1+i) )(1-e x(1-i) )) =(1- e x(n+1)(1+i) — e x(1-i) +e x(n+2+ni) )/|1- e x(1+i) | 2 =

=(1-e (n+1)x e i(n+1)x -e x e -ix +e (n+2)x e xni )/(1-2e x cosx+e 2x )

т.к. S(x)=Reσ(z), то получаем формулу:

S(x)=1+e x cosx+e 2 x cos2x+…+e nx cosnx=(1-e ( n +1) x cos(n+1)x+e ( n +2) x cosnx-e x cosx)/(1-2e x cosx+e 2 x )

Отсюда следует, что искомая сумма равна:

S(π)=1+e π cosπ+e 2 π cos2π+…+e nπ cosnπ= (1+e π +e π ( n +2) (-1) n -e ( n +1) (-1) n +1 )/(1+2e π +e 2π )= =((1+e π )+(-1) n e π ( n +1) (e π +1))/(e π +1) 2 =(1+(-1) n e π ( n +1) )/(1+e π )

12. Доказать, что Re(z-1)/(z+1)=0 |z|=1.

Т.к. (z-1)/(z+1)=((z-1)(z+1))/((z+1)(z+1))=(zz+z-z-1)/|z+1| 2 =((|z| 2 -1)+2iy)/|z+1| 2 ; то Re(z-1)(z+1)=0, если только |z| 2 -1=0 |z|=1.

13. Найти все значения корня 4 √1+i√3. Дать геометрическую иллюстрацию.

z= 4 √1+i√3= 4 √a, где a=1+i√3.

Т.к. а=r(cosφ+isinφ)=2(cosπ/3+isinπ/3), то zk= 4 √2(cos(π/3+2Kπ)/4+isin(π/3+2Kπ), где К=0,1,2,3.

Z0= 4 √2(cosπ/12+isinπ/12); z1= 4 √2(cos7π/12+isin7π/12);

Z2= 4 √2(cos13π/12+isin13π/12); z4= 4 √2(cos19π/12+isin19π/12).

14. Представить в алгебраической форме комплексное число 1/(1+i√3) 6 -1/(√3-i) 6 =z

Решение: преобразуем данное число:

1. Кураш А.Г. «Алгебраические уравнения произвольных степеней». М., «Наука», 1983.

2. Маркушевич А.И. «Комплексные числа и конформные отображения». М., «Физматгиз», 1960.

3. Стройк Д.Я. «Краткий очерк истории математики». М., «Наука», 1969.

4. Яглом И.И. « Комплексные числа и их применение в геометрии». М., Физматгиз, 1963.

5. Справочник по элементарной математике (для поступающих в ВУЗы) под редакцией Фильчакова П.Ф. «Наукова Думка», Киев – 1972.

Уравнение — определение и вычисление с примерами решения

Содержание:

Уравнения

Уравнения-следствия и равносильные преобразования уравнений

1. Понятие уравнения и его корней

Определение:

Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной

Под этой краткой записью понимают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны

Пример:

— линейное уравнение;

— квадратное уравнение;

— иррациональное уравнение (содержит переменную под знаком корня)

Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство.

Решить уравнение — значит найти все его корни или доказать, что их нет

— корень уравнения , так как при получаем верное равенство: , то есть

2. Область допустимых значений (ОДЗ)

Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций и , стоящих в левой и правой частях уравнения

Для уравнения ОДЗ: , то есть , так как область определения функции определяется условием: , а область определения функции — множество всех действительных чисел

3. Уравнения-следствия

Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения.

Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия.

При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения.

Пример:

Решение:

► Возведем обе части уравнения в квадрат:

Проверка, — корень (см. выше); — посторонний корень (при получаем неверное равенство ).

4. Равносильные уравнения

Определение:

Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни.

То есть каждый корень первого уравнения является корнем второго уравнения и, наоборот, каждый корень второго уравнения является корнем первого. (Схема решения уравнений с помощью равносильных преобразований приведена в пункте 5 этой таблицы)

Простейшие теоремы

  1. Если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве)
  2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получим уравнение, равносильное заданному (на ОДЗ заданного уравнения)

5. Схема поиска плана решения уравнений

— исходное уравнение;

— уравнение, полученное в результате преобразования исходного;

— символические изображения направления выполненных преобразований

Применение свойств функций к решению уравнений рассмотрено в пункте 3.2.

Объяснение и обоснование:

Понятие уравнения и его корней

Уравнение в математике чаще всего понимают как аналитическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной записывают так:

Часто уравнения определяют короче — как равенство с переменной.

Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.

Например, уравнение имеет единственный корень ,

а уравнение не имеет корней, поскольку значение не может быть отрицательным числом.

Область допустимых значений (ОДЗ) уравнения

Если задано уравнение , то общая область определения для функций и называется областью допустимых значений этого уравнения. (Иногда используются также термины «область определения уравнения» или «множество допустимых значений уравнения».) Например, для уравнения областью допустимых значений являются все действительные числа. Это можно записать, например, так: , поскольку функции и имеют области определения .

Понятно, что каждый корень данного уравнения принадлежит как области определения функции , так и области определения функции (иначе мы не сможем получить верное числовое равенство). Поэтому каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении функция определена при всех действительных значениях , а функция только при условии, что под знаком квадратного корня будут стоять неотрицательные выражения. Следовательно, ОДЗ этого уравнения задается системой из которой получаем систему не имеющую решений. Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней.

Заметим, что нахождение ОДЗ данного уравнения может быть полезным для его решения, но не всегда является обязательным элементом решения уравнения.

Методы решения уравнений

Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения уравнений в курсе математики 5-6 классов использовались зависимости между компонентами и результатами действий и свойства числовых равенств; в курсе алгебры 7-9 классов — равносильные преобразования уравнений, а для приближенного решения уравнений — графический метод.

Графический метод решения уравнений не дает высокой точности нахождения корней уравнения, и с его помощью чаще всего можно получить только грубые приближения корней. Иногда удобно графически определить количество корней уравнения или найти границы, в которых находятся эти корни. В некоторых случаях можно графически доказать, что уравнение не имеет корней. По указанным причинам в школьном курсе алгебры и начал анализа под требованием «решить уравнение» понимается требование «используя методы точного решения, найти корни данного уравнения». Приближенными методами решения уравнений можно пользоваться только тогда, когда об этом говорится в условии задачи (например, если ставится задача решить уравнение графически).

В основном при решении уравнений разных видов нам придется применять один из двух методов решения. Первый из них состоит в том, что данное уравнение заменяется более простым уравнением, имеющим те же корни,— равносильным уравнением. В свою очередь, полученное уравнение заменяется еще более простым, равносильным ему, и т. д. В результате получаем простейшее уравнение, которое равносильно заданному и корни которого легко находятся. Эти корни и только они являются корнями данного уравнения.

Второй метод решения уравнений состоит в том, что данное уравнение заменяется более простым уравнением, среди корней которого находятся все корни данного, то есть так называемым уравнением-следствием. В свою очередь, полученное уравнение заменяется еще более простым уравнением-следствием, и так далее до тех пор, пока не получим простейшее уравнение, корни которого легко находятся. Тогда все корни данного уравнения находятся среди корней последнего уравнения. Поэтому, чтобы найти корни данного уравнения, достаточно корни последнего уравнения подставить в данное и с помощью такой проверки получить корни данного уравнения (и исключить так называемые посторонние корни — те корни последнего уравнения, которые не удовлетворяют заданному).

В следующем пункте будет также показано применение свойств функций к решению уравнений определенного вида.

Уравнения-следствия

Рассмотрим более детально, как можно решать уравнения с помощью уравнений-следствий. При решении уравнений главное — не потерять корни данного уравнения, и поэтому в первую очередь мы должны следить за тем, чтобы каждый корень исходного уравнения оставался корнем следующего. Фактически это и является определением уравнения-следствия:

в том случае, когда каждый корень первого уравнения является корнем второго, второе уравнение называется следствием первого.

Это определение позволяет обосновать такой ориентир: для получения уравнения-следствия достаточно рассмотреть данное уравнение как верное числовое равенство и гарантировать (то есть иметь возможность обосновать), что каждое следующее уравнение мы можем получить как верное числовое равенство.

Действительно, если придерживаться этого ориентира, то каждый корень первого уравнения обращает это уравнение в верное числовое равенство, но тогда и второе уравнение будет верным числовым равенством, то есть рассматриваемое значение переменной является корнем и второго уравнения, а это и означает, что второе уравнение является следствием первого.

Применим приведенный ориентир к уравнению (пока что не используя известное условие равенства дроби нулю).

Если правильно то, что дробь равна нулю, то обязательно ее числитель равен нулю. Таким образом, из заданного уравнения получаем уравнение-следствие . Но тогда верно, что . Последнее уравнение имеет два корня: и . Подставляя их в заданное уравнение, видим, что только корень удовлетворяет исходному уравнению. Почему это случилось?

Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторонних корней рассмотрены в таблице 9.) Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один ориентир: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 8. В пункте 3 этой таблицы приведено решение уравнения

(1)

Для решения этого уравнения с помощью уравнений-следствий достаточно данное уравнение рассмотреть как верное числовое равенство и учесть, что в случае когда два числа равны, то и их квадраты также будут равны:

(2)

То есть мы гарантируем, что если равенство (1) верно, то и равенство (2) также будет верным, а это и означает (как было показано выше), что уравнение (2) является следствием уравнения (1). Если мы хотя бы один раз использовали уравнения-следствия (а не равносильные преобразования), то можем получить посторонние корни, и тогда в решение обязательно входит проверка полученных корней подстановкой их в заданное уравнение.

Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком , но его использование для записи решения не является обязательным. Вместе с тем, если этот значок записан, то это свидетельствует о том, что мы воспользовались уравнениями-следствиями, и поэтому обязательно в запись решения необходимо включить проверку полученных корней.

Равносильные уравнения

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом ).

В курсе алгебры и начал анализа мы будем рассматривать более общее понятие равносильности, а именно: равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни, то есть каждый корень первого уравнения является корнем второго и, наоборот, каждый корень второго уравнения является корнем первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения и — равносильные, поскольку оба имеют одинаковый корень и других корней не имеют. Таким образом, каждое из них имеет те же решения, что и второе. При рассмотрении равносильности уравнений на множестве, которое отличается от множества всех действительных чисел, ответ на вопрос «Равносильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рассмотреть уравнения:

(3)

(4)

то, как было показано выше, уравнение (3) имеет единственный корень , а уравнение (4) — два корня: и . Таким образом, на множестве

всех действительных чисел эти уравнения не являются равносильными, поскольку у уравнения (4) есть корень , которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равносильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень и уравнение (4) также имеет единственный положительный корень . Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее

все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы).

Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Например, для уравнения задается неравенством . Когда мы переходим к уравнению , то для всех его корней это уравнение является верным равенством. Тогда выражение , стоящее в правой части этого равенства, всегда неотрицательно (), таким образом, и равное ему выражение также будет неотрицательным: . Но это и означает, что ОДЗ данного уравнения () учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения к уравнению ОДЗ заданного уравнения можно не записывать в решение.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий. Как указывалось выше, выполняя равносильные преобразования уравнений, необходимо учесть ОДЗ данного уравнения — это и есть первый ориентир для выполнения равносильных преобразований уравнений. По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и, наоборот, каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму.

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при выполнении равносильных преобразований мы должны гарантировать сохранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым ориентиром для решения уравнений с помощью равносильных преобразований. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 8.)

Например, чтобы решить с помощью равносильных преобразований уравнение достаточно учесть его ОДЗ: и условие равенства дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внимание на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

. ОДЗ: . Тогда . Отсюда (удовлетворяет условию ОДЗ) или (не удовлетворяет условию ОДЗ).

Для выполнения равносильных преобразований уравнений можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности уравнений обобщим также формулировки простейших теорем о равносильности, известных из курса алгебры 7 класса.

Теорема 1. Если из одной части уравнения перенести в другую часть слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве).

Теорема 2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получаем уравнение, равносильное заданному (на ОДЗ заданного).

Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований данного уравнения.

Замечание. Для обозначения перехода от данного уравнения к равносильному ему уравнению можно применять специальный значок , но его использование при записи решений не является обязательным. Например, запись решения последнего из рассмотренных уравнений может быть такой.

Пример №423

Решите уравнение .

Решение:

► ОДЗ: и

На этой ОДЗ данное уравнение равносильно уравнениям:

то есть

Учтем ОДЗ. При

Таким образом, — корень.

Ответ:

Используем равносильные преобразования для решения данного уравнения. Для этого необходимо учесть ОДЗ, поэтому зафиксируем ее ограничения в начале решения.

Укажем, что в уравнениях ограничения ОДЗ можно только зафиксировать, но не решать, а в конце проверить, выполняются ли эти ограничения для найденных корней.

При переносе члена данного уравнения из одной части уравнения в другую с противоположным знаком получаем уравнение (1), равносильное заданному.

Приводя к общему знаменателю, раскрывая скобки и приводя подобные члены, снова получаем верное равенство и можем обосновать, что при выполнении обратных действий равенство также не нарушается, таким образом, полученные уравнения (1)-(3) равносильны заданному (на его ОДЗ).

Дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю. Но второе условие уже учтено в ограничениях ОДЗ, таким образом, получаем уравнение (4), равносильное заданному уравнению на его ОДЗ. Поскольку все преобразования были равносильными только с учетом ОДЗ, то мы должны проверить, удовлетворяет ли полученное число ограничениям ОДЗ.

Причины появления посторонних корней и потери корней при решении уравнений

Наиболее типичные случаи появления посторонних корней и потери корней приведены в таблице 9. Там же указано, как в каждом из этих случаев получить правильное (или полное) решение.

Применение свойств функций к решению уравнений

1. Конечная ОДЗ

Если область допустимых значений (ОДЗ) уравнения (неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения

Пример:

— корень (),

— не корень ().

2. Оценка левой и правой частей уравнения

Если надо решить уравнение вида и выяснилось, что то равенство между левой и правой частями возможно тогда и только тогда, когда и одновременно равны

Пример:

(так как ).

Итак, заданное уравнение равносильно системе

Сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю

Пример:

Итак, заданное уравнение равносильно системе

Из первого уравнения получаем , что удовлетворяет всей системе

3. Использование возрастания и убывания функций

Схема решения уравнения

1. Подбираем один или несколько корней уравнения.

2. Доказываем, что других корней это уравнение не имеет (используя теоремы о корнях уравнения или оценку левой и правой частей уравнения)

Теоремы о корнях уравнения

Если в уравнении функция возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке.

Пример:

Уравнение имеет единственный корень , то есть ), поскольку функция возрастает на всей области определения

Если в уравнении функция возрастает на некотором промежутке, а функция убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке.

Пример:

Уравнение имеет единственный корень ( то есть ), поскольку возрастает на всей области определения , a убывает (на множестве , а следовательно, и при )

Объяснение и обоснование:

Конечная ОДЗ

Напомним, что в случае, когда дано уравнение , общая область определения для функций называется областью допустимых значений этого уравнения. Понятно, что каждый корень заданного уравнения принадлежит как области определения функции , так и области определения функции . Таким образом, каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях за счет анализа ОДЗ получить решение уравнения. Например, если дано уравнение \, то его ОДЗ можно записать с помощью системы . Решая эту систему, получаем то есть . Таким образом, ОДЗ данного уравнения состоит только из одного значения . Но если только для одного числа необходимо выяснить, является ли оно корнем данного уравнения, то для этого достаточно подставить это значение в уравнение. В результате получаем верное числовое равенство (). Следовательно, — корень данного уравнения. Других корней у этого уравнения быть не может, поскольку все корни уравнения находятся в его ОДЗ, а там нет других значений, кроме .

Рассмотренный пример позволяет выделить ориентир для решения аналогичных уравнений:

если ОДЗ уравнения (а также неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения.

Замечание. В том случае, когда ОДЗ — пустое множество (не содержит ни одного числа), мы можем сразу дать ответ, что данное уравнение не имеет корней.

Например, если необходимо решить уравнение , то его ОДЗ задается системой то есть системой которая не имеет решений. Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней.

Оценка левой и правой частей уравнения

Некоторые уравнения можно решить с помощью оценки левой и правой частей уравнения.

Пусть дано уравнение , и нам удалось выяснить, что для всех допустимых значений значение , а значение .

Рассмотрим два случая:

Если , то равенство не может выполняться, потому что , то есть при данное уравнение корней не имеет. Остается только случай , но, учитывая необходимость выполнения равенства , имеем, что тогда и . Таким образом, мы обосновали, что выполнение равенства (при условии и ) гарантирует одновременное выполнение равенств и (и наоборот, если одновременно выполняются равенства и , то выполняется и равенство . Как было показано в п. 3.1, это и означает, что уравнение равносильно системе

Коротко это можно записать так:

Пример использования такого приема решения уравнений приведен в пункте 2 таблицы 10.

Аналогично предыдущим рассуждениям обосновывается и ориентир по решению уравнения , в котором все функции-слагаемые неотрицательны .

Если предположить, что , то сумма всех функций, стоящих в левой части этого уравнения, может равняться нулю только тогда, когда сумма будет отрицательной. Но это невозможно, поскольку по условию все функции неотрицательные. Таким образом, при данное уравнение не имеет корней. Эти же рассуждения можно повторить для любой другой функции-слагаемого. Остается единственная возможность — все функции-слагаемые равны нулю (очевидно, что в этом случае равенство обязательно будет выполняться). Таким образом, сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю.

Например, чтобы решить уравнение , достаточно перенести все члены в одну сторону, записать уравнение в виде и учесть, что функции неотрицательные. Таким образом, данное уравнение равносильно системе

Из второго уравнения получаем , что удовлетворяет и всей системе. Следовательно, данное уравнение имеет единственный корень .

Использование возрастания и убывания функций к решению уравнений

Использование возрастания и убывания функций к решению уравнений опирается на такое свойство: возрастающая или убывающая функция принимает каждое свое значение только в одной точке ее области определения.

Полезно помнить специальные теоремы о корнях уравнения.

Теорема 1. Если в уравнении функция возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке.

Графически утверждение теоремы проиллюстрировано на рисунке 52. Прямая пересекает график возрастающей на промежутке функции только в одной точке. Это и означает, что уравнение не может иметь больше одного корня на промежутке . Докажем это утверждение аналитически.

• Если на промежутке уравнение имеет корень , то . Других корней быть не может, поскольку для возрастающей функции при получаем неравенство , а при — неравенство . Таким образом, при . Аналогично и для убывающей функции при получаем .

Теорема 2. Если в уравнении функция возрастает на некотором промежутке, а функция убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке.

Графически утверждение теоремы проиллюстрировано на рисунке 53.

• Если на промежутке уравнение имеет корень , то . Других корней быть не может, поскольку, например, для возрастающей функции и убывающей функции при имеем , a , таким образом, . Аналогично и при .

Каждая из этих теорем утверждает, что в рассмотренном промежутке данное уравнение может иметь не более чем один корень, то есть или это уравнение совсем не имеет корней, или оно имеет единственный корень. Если нам удалось подобрать один корень такого уравнения, то других корней в заданном промежутке уравнение не имеет.

Например, чтобы решить уравнение , достаточно заметить, что функция является возрастающей на всей числовой прямой (как сумма двух возрастающих функций) и что — корень этого уравнения (). Таким образом, данное уравнение имеет единственный корень .

Корень получен подбором. Как правило, подбор начинают с целых значений: которые подставляются в данное уравнение.

Заметим, что каждая из этих теорем гарантирует единственность корня уравнения (если он есть) только на промежутке возрастания (или убывания) соответствующей функции. Если функция имеет несколько промежутков возрастания и убывания, то приходится рассматривать каждый из них отдельно.

Пример:

Решим с помощью теоремы 2 уравнение .

► Сначала следует учесть его ОДЗ: и вспомнить, что функция на всей области определения не является ни убывающей, ни возрастающей (п. 2.2), но она убывает на каждом из промежутков и . Поэтому рассмотрим каждый из этих промежутков отдельно.

1) При данное уравнение имеет корень . Функция возрастает при (как было показано выше, она возрастает на множестве ), а функция убывает на промежутке . Таким образом, данное уравнение при имеет единственный корень .

2) При данное уравнение имеет корень . Функция возрастает при , а функция убывает на этом промежутке. Поэтому данное уравнение при имеет единственный корень . В ответ следует записать все найденные корни (хотя на каждом из промежутков корень единственный, но всего корней — два). Итак, данное уравнение имеет только два корня: 1 и -1.

Примеры решения задач:

Пример №424

Решите уравнение .

Решение:

► ОДЗ: . На ОДЗ . Тогда функция (как сумма двух взаимно обратных положительных чисел), а функция .

Таким образом, данное уравнение равносильно системе . Из второго уравнения системы получаем , что удовлетворяет и первому уравнению. Таким образом, система (а значит, и данное уравнение) имеет единственное решение .

Если раскрыть скобки и привести обе части уравнения к общему знаменателю, то для нахождения корней полученного уравнения придется решать полное уравнение восьмой степени, все корни которого мы не сможем найти.

Попытаемся оценить области значений функций, стоящих в левой и правой частях уравнения. Поскольку на ОДЗ , то в левой части уравнения стоит сумма двух взаимно обратных положительных чисел, которая всегда больше или равна 2. В правой части из 2 вычитается неотрицательное число . Таким образом, при всех значениях получаем значение, меньшее или равное 2. Равенство между левой и правой частями возможно тогда и только тогда, когда обе части равны 2.

Пример №425

Решите систему уравнений

Решение:

► ОДЗ: Рассмотрим функцию . На своей области определения эта функция является возрастающей (как сумма двух возрастающих функций). Тогда первое уравнение заданной системы, которое имеет вид , равносильно уравнению . Таким образом, на ОДЗ заданная система равносильна системе

Подставляя во второе уравнение системы, имеем , . Учитывая, что на ОДЗ , получаем . Тогда .

Иногда свойства функций удается применить при решении систем уравнений. Если заметить, что в левой и правой частях первого уравнения заданной системы стоят значения одной и той же функции, которая является возрастающей (как сумма двух возрастающих функций), то равенство для возрастающей функции возможно тогда и только тогда, когда , поскольку возрастающая функция может принимать одинаковые значения только при одном значении аргумента. (Заметим, что такое же свойство будет иметь место и для убывающей функции.)

Замечание. Утверждение, обоснованное в комментарии к задаче 2, может быть использовано при решении аналогичных задач. Коротко его можно сформулировать так: если функция является возрастающей (или убывающей) на определенном множестве, то на этом множестве

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Метод математической индукции
  • Система координат в пространстве
  • Иррациональные числа
  • Действительные числа
  • Интеграл и его применение
  • Первообразная и интегра
  • Уравнения и неравенства
  • Уравнения и неравенства содержащие знак модуля

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://kazedu.com/referat/101517/4

http://www.evkova.org/uravnenie-opredelenie-i-vyichislenie-s-primerami-resheniya