Найти все корни уравнения метод касательных

Метод Ньютона

Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции, заданной в явном виде

  1. Примеры правильного написания F(x) :
    1. 10•x•e 2x = 10*x*exp(2*x)
    2. x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
    3. x 3 -x 2 +3 = x^3-x^2+3
    4. Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .

    Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
    Приближенное нахождение корней уравнения складывается из двух этапов:

    1. Отделение корней, то есть установление интервалов [αii] , в которых содержится один корень уравнения.
      1. f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
      2. f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
      3. f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
    2. Уточнение приближенных корней, то есть доведение их до заданной точности.

    Геометрическая интерпретация метода Ньютона (метод касательных)

    Критерий завершения итерационного процесса имеет вид

    Численные методы: решение нелинейных уравнений

    Задачи решения уравнений постоянно возникают на практике, например, в экономике, развивая бизнес, вы хотите узнать, когда прибыль достигнет определенного значения, в медицине при исследовании действия лекарственных препаратов, важно знать, когда концентрация вещества достигнет заданного уровня и т.д.

    В задачах оптимизации часто необходимо определять точки, в которых производная функции обращается в 0, что является необходимым условием локального экстремума.

    В статистике при построении оценок методом наименьших квадратов или методом максимального правдоподобия также приходится решать нелинейные уравнения и системы уравнений.

    Итак, возникает целый класс задач, связанных с нахождением решений нелинейных уравнений, например, уравнения или уравнения и т.д.

    В простейшем случае у нас имеется функция , заданная на отрезке ( a , b ) и принимающая определенные значения.

    Каждому значению x из этого отрезка мы можем сопоставить число , это и есть функциональная зависимость, ключевое понятие математики.

    Нам нужно найти такое значение при котором такие называются корнями функции

    Визуально нам нужно определить точку пересечения графика функции с осью абсцисс.

    Метод деления пополам

    Простейшим методом нахождения корней уравнения является метод деления пополам или дихотомия.

    Этот метод является интуитивно ясным и каждый действовал бы при решении задачи подобным образом.

    Алгоритм состоит в следующем.

    Предположим, мы нашли две точки и , такие что и имеют разные знаки, тогда между этими точками находится хотя бы один корень функции .

    Поделим отрезок пополам и введем среднюю точку .

    Тогда либо , либо .

    Оставим ту половину отрезка, для которой значения на концах имеют разные знаки. Теперь этот отрезок снова делим пополам и оставляем ту его часть, на границах которой функция имеет разные знаки, и так далее, достижения требуемой точности.

    Очевидно, постепенно мы сузим область, где находится корень функции, а, следовательно, с определенной степенью точности определим его.

    Заметьте, описанный алгоритм применим для любой непрерывной функции.

    К достоинствам метода деления пополам следует отнести его высокую надежность и простоту.

    Недостатком метода является тот факт, что прежде чем начать его применение, необходимо найти две точки, значения функции в которых имеют разные знаки. Очевидно, что метод неприменим для корней четной кратности и также не может быть обобщен на случай комплексных корней и на системы уравнений.

    Порядок сходимости метода линейный, на каждом шаге точность возрастает вдвое, чем больше сделано итераций, тем точнее определен корень.

    Метод Ньютона: теоретические основы

    Классический метод Ньютона или касательных заключается в том, что если — некоторое приближение к корню уравнения , то следующее приближение определяется как корень касательной к функции , проведенной в точке .

    Уравнение касательной к функции в точке имеет вид:

    В уравнении касательной положим и .

    Тогда алгоритм последовательных вычислений в методе Ньютона состоит в следующем:

    Сходимость метода касательных квадратичная, порядок сходимости равен 2.

    Таким образом, сходимость метода касательных Ньютона очень быстрая.

    Запомните этот замечательный факт!

    Без всяких изменений метод обобщается на комплексный случай.

    Если корень является корнем второй кратности и выше, то порядок сходимости падает и становится линейным.

    Упражнение 1. Найти с помощью метода касательных решение уравнения на отрезке (0, 2).

    Упражнение 2. Найти с помощью метода касательных решение уравнения на отрезке (1, 3).

    К недостаткам метода Ньютона следует отнести его локальность, поскольку он гарантированно сходится при произвольном стартовом приближении только, если везде выполнено условие , в противной ситуации сходимость есть лишь в некоторой окрестности корня.

    Недостатком метода Ньютона является необходимость вычисления производных на каждом шаге.

    Визуализация метода Ньютона

    Метод Ньютона (метод касательных) применяется в том случае, если уравнение f(x) = 0 имеет корень , и выполняются условия:

    1) функция y= f(x) определена и непрерывна при ;

    2) f(af(b) 0. Таким образом, выбирается точка с абсциссой x0, в которой касательная к кривой y=f(x) на отрезке [a;b] пересекает ось Ox. За точку x0 сначала удобно выбирать один из концов отрезка.

    Рассмотрим метод Ньютона на конкретном примере.

    Пусть нам дана возрастающая функция y = f(x) =x 2 -2, непрерывная на отрезке (0;2), и имеющая f ‘(x) = 2x > 0 и f »(x) = 2 > 0.

    Уравнение касательной в общем виде имеет представление:

    В нашем случае: y-y0=2x0·(x-x0). В качестве точки x0 выбираем точку B1(b; f(b)) = (2,2). Проводим касательную к функции y = f(x) в точке B1, и обозначаем точку пересечения касательной и оси Ox точкой x1. Получаем уравнение первой касательной:y-2=2·2(x-2), y=4x-6.

    Точка пересечения касательной и оси Ox: x1 =

    Рисунок 2. Результат первой итерации

    Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x1, получаем точку В2 =(1.5; 0.25). Снова проводим касательную к функции y = f(x) в точке В2, и обозначаем точку пересечения касательной и оси Ox точкой x2.

    Точка пересечения касательной и оси Ox: x2 = .

    Рисунок 3. Вторая итерация метода Ньютона

    Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x2, получаем точку В3 и так далее.

    В3 = ()

    Рисунок 4. Третий шаг метода касательных

    Первое приближение корня определяется по формуле:

    = 1.5.

    Второе приближение корня определяется по формуле:

    =

    Третье приближение корня определяется по формуле:

    Таким образом, i-ое приближение корня определяется по формуле:

    Вычисления ведутся до тех пор, пока не будет достигнуто совпадение десятичных знаков, которые необходимы в ответе, или заданной точности e — до выполнения неравенства |xixi-1|

    using namespace std;

    float f(double x) //возвращает значение функции f(x) = x^2-2

    float df(float x) //возвращает значение производной

    float d2f(float x) // значение второй производной

    int _tmain(int argc, _TCHAR* argv[])

    int exit = 0, i=0;//переменные для выхода и цикла

    double x0,xn;// вычисляемые приближения для корня

    double a, b, eps;// границы отрезка и необходимая точность

    cin>>a>>b; // вводим границы отрезка, на котором будем искать корень

    cin>>eps; // вводим нужную точность вычислений

    if (a > b) // если пользователь перепутал границы отрезка, меняем их местами

    if (f(a)*f(b)>0) // если знаки функции на краях отрезка одинаковые, то здесь нет корня

    cout 0) x0 = a; // для выбора начальной точки проверяем f(x0)*d2f(x0)>0 ?

    xn = x0-f(x0)/df(x0); // считаем первое приближение

    cout eps) // пока не достигнем необходимой точности, будет продолжать вычислять

    xn = x0-f(x0)/df(x0); // непосредственно формула Ньютона

    > while (exit!=1); // пока пользователь не ввел exit = 1

    Посмотрим, как это работает. Нажмем на зеленый треугольник в верхнем левом углу экрана, или же клавишу F5.

    Если происходит ошибка компиляции «Ошибка error LNK1123: сбой при преобразовании в COFF: файл недопустим или поврежден», то это лечится либо установкой первого Service pack 1, либо в настройках проекта Свойства -> Компоновщик отключаем инкрементную компоновку.

    Рис. 4. Решение ошибки компиляции проекта

    Мы будем искать корни у функции f(x) = x2-2.

    Сначала проверим работу приложения на «неправильных» входных данных. На отрезке [3; 5] нет корней, наша программа должна выдать сообщение об ошибке.

    У нас появилось окно приложения:

    Рис. 5. Ввод входных данных

    Введем границы отрезка 3 и 5, и точность 0.05. Программа, как и надо, выдала сообщение об ошибке, что на данном отрезке корней нет.

    Рис. 6. Ошибка «На этом отрезке корней нет!»

    Выходить мы пока не собираемся, так что на сообщение «Exit?» вводим «0».

    Теперь проверим работу приложения на корректных входных данных. Введем отрезок [0; 2] и точность 0.0001.

    Рис. 7. Вычисление корня с необходимой точностью

    Как мы видим, необходимая точность была достигнута уже на 4-ой итерации.

    Чтобы выйти из приложения, введем «Exit?» => 1.

    Метод секущих

    Чтобы избежать вычисления производной, метод Ньютона можно упростить, заменив производную на приближенное значение, вычисленное по двум предыдущим точкам:

    /

    Итерационный процесс имеет вид:

    где .

    Это двухшаговый итерационный процесс, поскольку использует для нахождения последующего приближения два предыдущих.

    Порядок сходимости метода секущих ниже, чем у метода касательных и равен в случае однократного корня .

    Эта замечательная величина называется золотым сечением:

    Убедимся в этом, считая для удобства, что .

    Таким образом, с точностью до бесконечно малых более высокого порядка

    Отбрасывая остаточный член, получаем рекуррентное соотношение, решение которого естественно искать в виде .

    После подстановки имеем: и

    Для сходимости необходимо, чтобы было положительным, поэтому .

    Поскольку знание производной не требуется, то при том же объёме вычислений в методе секущих (несмотря на меньший порядок сходимости) можно добиться большей точности, чем в методе касательных.

    Отметим, что вблизи корня приходится делить на малое число, и это приводит к потере точности (особенно в случае кратных корней), поэтому, выбрав относительно малое , выполняют вычисления до выполнения и продолжают их пока модуль разности соседних приближений убывает.

    Как только начнется рост, вычисления прекращают и последнюю итерацию не используют.

    Такая процедура определения момента окончания итераций называется приемом Гарвика.

    Метод парабол

    Рассмотрим трехшаговый метод, в котором приближение определяется по трем предыдущим точкам , и .

    Для этого заменим, аналогично методу секущих, функцию интерполяционной параболой проходящей через точки , и .

    В форме Ньютона она имеет вид:

    Точка определяется как тот из корней этого полинома, который ближе по модулю к точке .

    Порядок сходимости метода парабол выше, чем у метода секущих, но ниже, чем у метода Ньютона.

    Важным отличием от ранее рассмотренных методов, является то обстоятельство, что даже если вещественна при вещественных и стартовые приближения выбраны вещественными, метод парабол может привести к комплексному корню исходной задачи.

    Этот метод очень удобен для поиска корней многочленов высокой степени.

    Метод простых итераций

    Задачу нахождения решений уравнений можно формулировать как задачу нахождения корней: , или как задачу нахождения неподвижной точки.

    Пусть и — сжатие: (в частности, тот факт, что — сжатие, как легко видеть, означает, что).

    По теореме Банаха существует и единственна неподвижная точка

    Она может быть найдена как предел простой итерационной процедуры

    где начальное приближение — произвольная точка промежутка .

    Если функция дифференцируема, то удобным критерием сжатия является число . Действительно, по теореме Лагранжа

    Таким образом, если производная меньше единицы, то является сжатием.

    Условие существенно, ибо если, например, на [0,1] , то неподвижная точка отсутствует, хотя производная равна нулю. Скорость сходимости зависит от величины . Чем меньше , тем быстрее сходимость.

    Рассмотрим уравнение: .

    Если в качестве взять функцию , то соответствующая итерационная процедура будет иметь вид: . Как нетрудно убедиться, метод итераций в данном случае расходится при любой начальной точке , не совпадающей с собственно неподвижной точкой .

    Однако можно в качестве можно взять, например, функцию . Соответствующая итерационная процедура имеет вид: .

    Эти итерации сходятся к неподвижной точке для любого начального приближения :

    Действительно, в первом случае , т.е. для выполнения условия необходимо чтобы , но тогда . Таким образом, отображение сжатием не является.

    Рассмотрим , неподвижная точка та же самая, ситуация другая. Здесь, хотя формально производная может быть довольно большой (при малых ж), однако уже на следующем шаге она будет меньше 1.

    т.е. такой итерационный процесс всегда сходится.

    Метод Ньютона представляет собой частный случай метода простых итераций.

    Здесь нетрудно убедиться, что при существует окрестность корня, в которой .

    то если корень кратности , то в его окрестности и, следовательно,.

    Если — простой корень, то сходимость метода касательных квадратичная (то есть порядок сходимости равен 2).

    Поскольку , то

    Таким образом, сходимость метода Ньютона очень быстрая.

    Нахождение всех корней уравнения

    Недостатком почти всех итерационных методов нахождения корней является то, что они при однократном применении позволяют найти лишь один корень функции, к тому же, мы не знаем какой именно.

    Чтобы найти другие корни, можно было бы брать новые стартовые точки и применять метод вновь, но нет гарантии, что при этом итерации сойдутся к новому корню, а не к уже найденному, если вообще сойдутся.

    Для поиска других корней используется метод удаления корней.

    Пусть — корень функции , рассмотрим функцию. Точка будет являться корнем функции на единицу меньшей кратности, чем, при этом все остальные корни у функций и совпадают с учетом кратности.

    Применяя тот или иной метод нахождения корней к функции , мы найдем новый корень (который может в случае кратных корней и совпадать с ). Далее можно рассмотреть функцию и искать корни у неё.

    Повторяя указанную процедуру, можно найти все корни с учетом кратности.

    Заметим, что когда мы производим деление на тот или иной корень , то в действительности мы делим лишь на найденное приближение , и, тем самым, несколько сдвигаем корни вспомогательной функции относительно истинных корней функции . Это может привести к значительным погрешностям, если процедура отделения применялась уже достаточное число раз.

    Чтобы избежать этого, с помощью вспомогательных функций вычисляются лишь первые итерации, а окончательные проводятся по исходной функции , используя в качестве стартового приближения, последнюю итерацию, полученную по вспомогательной функции.

    Мы рассмотрели решение уравнений только в одномерном случае, нахождение решений многомерных уравнений существенно более трудная задача.

    Метод касательных: описание

    Мучаясь в школе над решением уравнений на уроках математики, многие ученики часто уверены, что тратят время абсолютно впустую, а между тем такой навык пригодится в жизни не только тем, кто решит пойти по стопам Декарта, Эйлера или Лобачевского.

    На практике, например в медицине или экономике, сплошь и рядом встречаются ситуации, когда специалисту требуется выяснить, когда концентрация активного вещества того или иного препарата достигнет требуемого уровня в крови пациента или нужно высчитать время, необходимое конкретному бизнесу для того, чтобы он стал рентабельным.

    Чаще всего речь идет о решении нелинейных уравнений различного типа. Сделать это максимально быстро, особенно с использованием ЭВМ, позволяют численные методы. Они хорошо изучены и давно доказали свою эффективность. К их числу относится и метод касательных Ньютона, которым посвящена эта статья.

    Постановка задачи

    В данном случае имеется функция g, которая задана на отрезке (a, b) и принимает на нем определенные значения, т. е. каждому x, принадлежащему (a, b) возможно сопоставить конкретное число g(x).

    Требуется установить все корни уравнения из промежутка между точками a и b (включая концы), для которых функция обнуляется. Очевидно, что это будут точки пересечения y = g(x) с ОХ.

    В некоторых случаях удобнее заменить g(x)=0 на аналогичное, вида g1(x) = g2(x). В таком случае в качестве корней выступают абсциссы (значение x) точек пересечения графиков g1(x) и g2(x).

    Решение нелинейного уравнения важно и для задач оптимизации, для которых условие локального экстремума — обращение в 0 производной функции. Иными словами, такая задача может свестись к поиску корней уравнения p(x) = 0, где p(x) тождественна g'(x).

    Методы решения

    Для некоторых видов нелинейных уравнений, например квадратных или простых тригонометрических, найти корни можно достаточно простыми способами. В частности, каждый школьник знает формулы, используя которые можно без проблем находить значения аргумента точек, где обнуляется квадратный трехчлен.

    Способы извлечения корней нелинейных уравнений принято делить на аналитические (прямые) и итерационные. В первом случае искомое решение имеет вид формулы, используя которую за некоторое число арифметических операций можно найти значение искомых корней. Подобные методы разработаны для показательных, тригонометрических, логарифмических и простейших алгебраических уравнений. Для остальных же приходится использовать специальные численные методы. Их легко реализовать с помощью ЭВМ, которые позволяют найти корни с требуемой точностью.

    К их числу относится и так называемый численный метод касательных. Последний был предложен великим ученым Исааком Ньютоном в конце XVII века. В последующие столетия метод неоднократно совершенствовался.

    Локализация

    Численные способы решения сложных уравнений, не имеющих аналитических решений, принято осуществлять в 2 этапа. Сначала требуется их локализировать. Эта операция заключается в нахождение таких отрезков на ОХ, на которых существует один корень решаемого уравнения.

    Рассмотрим отрезок [a,b]. Если g(x) на нем не имеет разрывов и принимает в концевых точках значения разных знаков, то между a и b или в них самих расположен по крайней мере 1 корень уравнения g(x) = 0. Чтобы он был единственным, требуется, чтобы g(x) на [a,b] была монотонной. Как известно, таким свойством она будет обладать при условии знакопостоянства g’(x).

    Говоря иначе, если на [a,b] g(x) не имеет разрывов и монотонно растет или убывает, а ее значения в концевых точках имеют не одинаковые знаки, то на [a, b] существует 1 и только 1 корень g(x).

    При этом следует знать, что этот критерий не будет действовать для корней уравнений, являющихся кратными.

    Решение уравнения делением пополам

    Прежде чем рассматривать более сложные численные методы (метод касательных и его разновидности) стоит познакомиться с наиболее простым способом выявления корней. Он называется дихотомией и относится к интуитивным методам. Алгоритм нахождения корней основан на теореме о том, что если для g(x), непрерывной на [x0, x1] выполняется условие разнознаковости, то на рассматриваемом отрезке есть хотя бы 1 корень g(x) = 0.

    Для его обнаружения нужно поделить отрезок [x0, x1] пополам и обозначить среднюю точку как x2. Тогда возможны два варианта: g(x0) * g(x2) либо g(x2) * g(x1) равны или меньше 0. Выбираем тот, для которого верно одно из этих неравенств. Повторяем процедуру, описанную выше, пока длина [x0, x1] не станет меньше некой, заранее выбранной величины, определяющей точность определения корня уравнения на [x0, x1].

    К достоинствам метода относится его надежность и простота, а недостаток — необходимость изначально выявить точки, в которых g(x) принимает разные знаки, поэтому его нельзя применять для корней, обладающих четной кратностью. Кроме того, он не обобщается на случай системы уравнений или если речь идет о комплексных корнях.

    Пример 1

    Пусть мы хотим решить уравнение g(x) = 2x 5 + x — 1 = 0. Чтобы долго не искать подходящий отрезок, строим график, используя, например, известную программу «Эксель». Мы видим, что в качестве отрезка для локализации корня лучше брать значения из промежутка [0,1]. Мы можем быть уверены, что хотя бы один корень искомого уравнения на нем есть.

    g'(x) = 10x 4 + 1, т. е. это монотонно возрастающая функция, поэтому на выбранном отрезке есть только 1 корень.

    Подставляем концевые точки в уравнение. Имеем 0 и 1 соответственно. На первом шаге за решение берем точку 0,5. Тогда g(0,5) = -0,4375. Значит ,следующий отрезок для деления пополам будет [0,5, 1]. Его серединная точка — 0,75. В ней значение функции равно 0,226. Берем для рассмотрения отрезок [0,5, 0,75] и его середину, которая находится в точке 0,625. Вычисляем значение g(x) в 0,625. Оно равно -0,11, т. е. отрицательное. Опираясь на этот результат, выбираем отрезок [0,625, 0,75]. Получаем x = 0,6875. Тогда g(x) = -0,00532. Если точность решения 0,01, то можем считать, что искомый результат равен 0,6875.

    Теоретическая база

    Этот способ нахождения корней методом касательных Ньютона пользуется популярностью из-за его очень быстрой сходимости.

    Он основан на том доказанном факте, что если xn — приближение к корню f(x)=0, таком, что f’ C 1 , то следующая апроксимация будет в точке, где обнуляется уравнение касательной к f(x), т. е.

    Подставляем x = xn+1 и обнуляем y.

    Тогда алгоритм метода касательных выглядит так:

    Пример 2

    Попробуем использовать классический метод касательных Ньютона и найти решение какого-либо нелинейного уравнения, которое сложно или невозможно отыскать аналитически.

    Пусть требуется выявить корни для x 3 + 4x — 3 = 0 с некоторой точностью, например 0,001. Как известно, график любой функции в виде многочлена нечетной степени должен хотя бы раз пересекать ось ОХ, т. е. сомневаться в существовании корней не приходится.

    Прежде чем решить наш пример методом касательных, строим график f(x) = x 3 + 4x — 3 поточечно. Это очень легко сделать, например, используя табличный процессор «Эксель». Из полученного графика будет видно, что на [0,1] происходит его пересечение с осью ОХ и функция y = x 3 + 4x — 3 монотонно возрастает. Мы можем быть уверены, что на [0,1] уравнения x 3 + 4x — 3 = 0 имеет решение и оно единственное.

    Алгоритм

    Любое решение уравнений методом касательных начинается с вычисления f ‘(x). Имеем:

    Тогда вторая производная будет иметь вид x * 6.

    Используя эти выражения, можем записать формулу для выявления корней уравнения по методу касательных в виде:

    Далее требуется выбрать начальное приближение, т. е. заняться определением, какую точку считать стартовой (об. x0) для итерационного процесса. Рассматриваем концы отрезка [0,1]. Нам подойдет тот, для которого верно условие разнознаковости функции и ее 2-ой производной в x0. Как видим, при подстановке x0 = 0 оно нарушено, а вот x0 = 1 вполне подходит.

    то если нас интересует решение методом касательных с точностью e, то значение xn можно считать удовлетворяющим требованиям задачи, при условии выполнения неравенства|f(xn) / f’(xn)| 3 + 4x0 — 3) / (3x0 2 + 4) = 1- 0,2857 = 0,71429;

  2. так как условие не выполняется, идем далее;
  3. получаем новое значение для x2, которое равно 0,674;
  4. замечаем, что отношение значения функции к ее производной в x2 меньше 0,0063, прекращаем процесс.
  5. Метод касательных в Excel

    Решить предыдущий пример можно намного легче и быстрее, если не производить расчеты вручную (на калькуляторе), а использовать возможности табличного процессора от компании «Майкрософт».

    Для этого в «Эксель» нужно создать новую страницу и заполнить ее ячейки следующими формулами:

    • в C7 записываем «= СТЕПЕНЬ (B7;3) + 4 * B7 — 3»;
    • в D7 вписываем «= 4 + 3 * СТЕПЕНЬ (B7;2)»;
    • в E7 записываем «= (СТЕПЕНЬ (B7;3)- 3 + 4 * B7) / (3* СТЕПЕНЬ (B7;2) + 4)»;
    • в D7 вписываем выражение «=В7 – Е7»;
    • в B8 вписываем формулу-условие «= ЕСЛИ(Е7 4 – 4 – 2 * х методом касательных в Паскале.

    Используем вспомогательную функцию, которая поможет осуществить приближенное вычисление f'(x) = (f(x + delta) — f(x)) / delta. В качестве условия для завершения итерационного процесса выберем выполнение неравенства|x0-x1| 27 августа, 2017


    источники:

    http://statistica.ru/branches-maths/chislennye-metody-resheniya-uravneniy/

    http://fb.ru/article/337323/metod-kasatelnyih-opisanie