Назвать бинарные соединения в уравнениях

Бинарные соединения: образование, типы, примеры, номенклатура

Бинарные соединения: образование, типы, примеры, номенклатура — Наука

Содержание:

В бинарные соединения все они образованы двумя химическими элементами, независимо от количества их атомов или их взаимодействия. Общая формула этих соединений: AпBм, где A и B — два разных элемента Периодической таблицы, и п Y м их соответствующие стехиометрические коэффициенты.

Например, вода, H2Или это бинарное соединение, возможно, наиболее представительное из них. Вода состоит из водорода H и кислорода O, таким образом, добавляются два химических элемента. Обратите внимание, что его стехиометрические коэффициенты указывают на наличие двух атомов водорода и одного атома кислорода, но это все же бинарное соединение.

Бинарные соединения могут состоять из ионов, молекул, трехмерных сетей или даже нейтральных атомов металлов. Важно то, что независимо от природы его химической связи или состава, он всегда состоит из двух разных химических элементов. Например, водород, H2, не считается бинарным соединением.

Бинарные соединения могут изначально не казаться такими многочисленными и сложными по сравнению с тройными или четвертичными соединениями. Однако они включают в себя многие важные вещества для наземных экосистем, такие как соли, оксиды, сульфиды и некоторые газы, имеющие огромное биологическое и промышленное значение.

Как образуются бинарные соединения?

Способы получения или пути синтеза для образования бинарных соединений будут зависеть от идентичности двух химических элементов A и B. Однако, в принципе и в целом, оба элемента должны быть объединены в реакторе, чтобы они могли взаимодействовать друг с другом. Таким образом, при благоприятных условиях произойдет химическая реакция.

В ходе химической реакции элементы A и B будут соединяться или связываться (ионно или ковалентно) с образованием соединения AпBм. Многие бинарные соединения могут быть образованы прямым объединением двух их чистых элементов или другими альтернативными, более экономически целесообразными методами.

Возвращаясь к примеру с водой, водородом, H2, а кислород O2, соединяются при высоких температурах так, чтобы между ними возникла реакция горения:

С другой стороны, воду можно получить реакциями дегидратации таких соединений, как спирты и сахара.

Другой пример образования бинарного соединения соответствует сульфиду железа FeS:

Fe (т) + S (т) → FeS (т)

На этот раз и железо, и сера — твердые вещества, а не газообразные. То же самое и с несколькими бинарными солями, например хлоридом натрия, NaCl, соединяющими металлический натрий с газообразным хлором:

2Na (s) + Cl2(г) → 2NaCl (т)

Номенклатура

Названия всех бинарных соединений в основном подчиняются одним и тем же правилам.

Для соединения АпBмсначала упоминается название элемента B в его анионной форме; то есть с окончанием -уро. Однако в случае, когда B состоит из кислорода, он называется оксидом, пероксидом или супероксидом, в зависимости от обстоятельств.

Имени B предшествуют префиксы греческих цифр (моно, ди, три, тетра и т. Д.) В соответствии со значением м.

Наконец, упоминается имя элемента A. Если A имеет более одной валентности, это указывается римскими цифрами в скобках. Или, если хотите, вы можете выбрать традиционную номенклатуру и использовать суффиксы –oso и –ico. Элементу A также иногда предшествуют префиксы греческих цифр в соответствии со значением п.

Рассмотрим следующие бинарные соединения вместе с их соответствующими названиями:

-ЧАС2Или: оксид водорода или монооксид дигидрогена (последнее название вызывает насмешки)

-FeS: сульфид железа (II) или сульфид железа

-NaCl: хлорид натрия или хлорид натрия

-MgCl2: хлорид магния, хлорид магния или дихлорид магния

Обратите внимание, что здесь не говорится «мононатрийхлорид» или «моно сульфид железа».

Типы: классификация бинарных соединений

Бинарные соединения классифицируются в зависимости от того, из чего они сделаны: ионы, молекулы, атомы металлов или сети. Тем не менее, эта классификация не является окончательной или окончательной и может варьироваться в зависимости от рассматриваемого подхода.

Ионика

В ионных бинарных соединениях A и B состоят из ионов. Таким образом, для соединения AпBм, B — обычно анион, B – , а A — катион, A + . Например, NaCl принадлежит к этой классификации, как и все бинарные соли, общие формулы которых лучше всего представлены как MX, где X — анион, а M — катион металла.

Таким образом, фториды, хлориды, бромиды, йодиды, гидриды, сульфиды, арсениды, оксиды, фосфиды, нитриды и т. Д. Также относятся к этой классификации. Однако следует отметить, что некоторые из них ковалентны, поэтому относятся к следующей классификации.

Коваленты

Ковалентные бинарные соединения состоят из молекул. Вода принадлежит к этой классификации, так как состоит из молекул H-O-H. Хлористый водород, HCl, также считается ковалентным бинарным соединением, поскольку он состоит из молекул H-Cl. Обратите внимание, что NaCl является ионным, а HCl — ковалентным, причем оба являются хлоридами.

Металлик или сетки

Бинарные соединения также включают сплавы и твердые тела в трехмерных решетках. Однако для них часто лучше использовать наименования бинарных материалов.

Например, латунь, а не соединение, считается бинарным материалом или сплавом, так как состоит из меди и цинка, Cu-Zn. Обратите внимание, что CuZn не записывается, потому что у него нет определенных стехиометрических коэффициентов.

Также есть диоксид кремния SiO2, образованный кремнием и кислородом. Его атомы связаны, образуя трехмерную сеть, в которой нельзя говорить о молекулах или ионах. Многие нитриды, фосфиды и карбиды, если они не являются ионными, также обрабатываются этим типом сеток.

Примеры бинарных соединений

В нем будут перечислены несколько бинарных соединений, сопровождаемых соответствующими названиями:

-LiBr: бромид лития

-CaCl2: хлорид кальция

-FeCl3: хлорид железа (III) или хлорид железа

-NaO: оксид натрия

-BeH2: гидрид бериллия

-CO2: углекислый газ

-NH3: тригидрид азота или аммиак

-PbI2: иодид свинца (II) или дииодид свинца

-Для2ИЛИ3: оксид алюминия или триоксид диалюминия

-На3P: фосфид натрия

-AlF3: фторид алюминия

-RaCl2: хлорид радия или дихлорид радия

-BF3: трифторид бора

-RbI: йодид рубидия

-WC: карбид вольфрама или вольфрам

У каждого из этих примеров может быть более одного имени одновременно. Из них СО2 он оказывает большое влияние на природу, так как используется растениями в процессе фотосинтеза.

С другой стороны, NH3 Это одно из наиболее промышленных веществ, необходимых для бесконечного полимерного и органического синтеза. И, наконец, унитаз — один из самых твердых материалов, когда-либо созданных.

Ссылки

  1. Шивер и Аткинс. (2008). Неорганическая химия. (Четвертый выпуск). Мак Гроу Хилл.
  2. Уиттен, Дэвис, Пек и Стэнли. (2008). Химия. (8-е изд.). CENGAGE Обучение.
  3. Артем Чепрасов. (2020). Что такое бинарное соединение? — Определение и примеры. Исследование. Получено с: study.com
  4. Хельменстин, Энн Мари, доктор философии (11 февраля 2020 г.). Определение двоичного соединения. Получено с: thinkco.com
  5. Byju’s. (2020). Что такое бинарные соединения? Получено с: byjus.com
  6. ChemTeam. (н.д.). Бинарные соединения металлов с фиксированным зарядом. Получено с: chemteam.info
  7. Википедия. (2020). Бинарная фаза. Получено с: en.wikipedia.org

15 основных характеристик живых существ

Поджог (боязнь огня): причины, симптомы и лечение

Уроки по неорганической химии для подготовки к ЕГЭ

Свойства простых веществ:

Свойства сложных веществ:

Особенности протекания реакций:

Химические свойства бинарных соединений

1. Взаимодействие бинарных соединений с O2 протекает, как правило, с образованием двух оксидов:

2ZnS + 3O2 → 2ZnO + 2SO2

2PH3 + 4O2 → P2O5 + 3H2O

SiH4 + 2O2 → SiO2 + 2H2O

Исключения:

4NH3 + 3O2 → 2N2 + 6H2O (горение)

4NH3 + 5O2 → 4NO + 6H2O (kt, каталитической окисление)

H2S + O2(изб.) → SO2 + H2O

2H2S + O2(нед.) → 2S + 2H2O

2. Взаимодействие бинарных соединений с H2O:

1) Нитриды

Mg3N2 + H2O → 3Mg(OH)2 + 2NH3­

Na3N + H2O → NaOH + NH3­

2) Фосфиды:

Ca3P2 + ­­6H2O → 3Ca(OH)2 +2PH3­

3) Силициды:

Mg2Si + H2O → Mg(OH)2 + SiH4­

4) Хлориды:

SiCl4 + 3H2O → H2SiO3 + 4HCl

PCl5 + 4H2O → H3PO4 + 5HCl

PCl3 + 3H2O → H3PO3 + 3HCl

5) Сульфиды:

SiS2 + 3H2O → H2SiO3 + 2H2S­

P2S5 + 8H2O → 2H3PO4 + 5H2S­

6) Карбиды:

CaC2 + 2H2O → Ca(OH)2 + C2H2

Al4C3 + 12H2O → 4Al(OH)3 + 3CH4

3. Взаимодействие бинарных соединений с HCl, HBr

1) Карбиды:

CaC2 + 2HCl → CaCl2 + C2H2

Al4C3 + 12HCl → 4AlCl3 + 3CH4

2) Фосфиды:

Ca3P2 + 6HCl → 3CaCl2 + 2PH3 (выделяется газ фосфин, а не хлорид фосфония)

3) Нитриды:

Ca3N2 + 8HCl → 3CaCl2 + 2NH4Cl
Li3N + 4HCl → 3LiCl + NH4Cl

Необратимый гидролиз бинарных соединений.

Бинарные соединения – соединения, образованные двумя химическими элементами.

Бинарные соединения делят на ионные и ковалентные.

Ионными называют такие бинарные соединения, которые образованы атомами металла и неметалла.

Ковалентными называют бинарные соединения, образованные двумя неметаллами.

Общая информация по гидролизу бинарных соединений

Многие бинарные соединения способны разлагаться под действием воды. Такая реакция бинарных соединений с водой называется необратимым гидролизом.

Необратимый гидролиз практически всегда протекает с сохранением степеней окисления всех элементов. В результате взаимодействия бинарных соединения с водой всегда:

✓ элемент в отрицательной степени окисления переходит в состав водородного соединения;

✓ элемент в положительной степени окисления переходит в состав соответствующего гидроксида.

Напомним, что гидроксид неметалла – это ни что иное, как соответствующая кислородсодержащая кислота. Так, например, гидроксид серы (VI) — это серная кислота H2SO4.

Так, например, попробуем записать уравнение необратимого гидролиза фосфида кальция Ca3P2, опираясь на информацию, представленную выше.

В фосфиде кальция мы имеем кальций в степени окисления «+2» и фосфор в степени окисления «-3». Как уже было сказано, в результате взаимодействия с водой должно образоваться водородное соединение элемента в отрицательной степени окисления (т.е. фосфора) и соответствующий гидроксид элемента в положительной степени окисления.

Также сказано, что в результате реакции гидролиза практически всегда сохраняются степени окисления элементов.

Это значит, что в образующемся водородном соединении фосфор будет иметь ту же степень окисления, что и в исходном фосфиде, т.е. «-3», исходя из чего легко записать формулу самого водородного соединения – PH3 (газ фосфин).

В то же время, кальций, как элемент в положительной степени окисления, должен перейти в состав соответствующего гидроксида с сохранением степени окисления «+2», т.е. в Ca(OH)2.

Таким образом, без расстановки коэффициентов реакция будет описываться следующей схемой:

Расставив коэффициенты получаем уравнение:

Используя аналогичный алгоритм, запишем уравнение гидролиза пентахлорида фосфора PCl5.

В данном соединении мы имеем фосфор в степени окисления «+5» и хлор в степени окисления «-1».

Очевидно, что водородным соединением хлора с хлором в степени окисления «-1» будет HCl.

В свою очередь, поскольку элемент в положительной степени окисления относится к неметаллам, его гидроксидом будет кислородсодержащая кислота с фосфором в той же степени окисления «+5».

При условии, что вы знаете формулы всех неорганических кислот, несложно догадаться, что данным гидроксидом является фосфорная кислота H3PO4.

Само уравнение при этом после расстановки коэффициентов будет иметь вид:

Как видите, если вам дали формулу бинарного соединения и попросили записать уравнения его гидролиза, то ничего сложного в этом нет.

Какие ионные бинарные соединения способны вступать в реакцию необратимого гидролиза?

Для успешной сдачи ЕГЭ нужно запомнить, что из ионных бинарных соединений в реакцию необратимого гидролиза водой вступают:

1) нитриды щелочных металов (ЩМ), щелочноземельных металлов (ЩЗМ) и магния:

2) фосфиды ЩМ, ЩЗМ и магния:

3) силициды ЩМ, ЩЗМ и магния:

4) карбиды ЩМ, ЩЗМ и магния. Знать нужно формулы только двух карбидов — Al4C3 и CaC2 и, соответственно, уметь записывать уравнения их гидролиза:

5) сульфиды алюминия и хрома:

6) гидриды ЩМ, ЩЗМ, Mg, Al:

Гидролиз гидридов металлов – редкий пример окислительно-восстановительного гидролиза. Фактически, в данной реакции объединяются ионы водорода H + и анионы водорода H — , в следствие чего образуются нейтральные молекулы H2 с водородом в степени окисления, равной 0.

Какие ковалентные бинарные соединения вступают в реакцию гидролиза?

Из ковалентных бинарных соединений, способных вступать в реакцию необратимого гидролиза, нужно знать про:

1) галогениды фосфора III и V.

2) галогениды кремния:

Гидролиз бинарных соединений действием растворов кислот и щелочей

Помимо обычного гидролиза водой существует также вариант гидролиза, при котором бинарное соединение обрабатывают водным раствором щелочи или кислоты.

Как в таком случае записать уравнение гидролиза?

Для того, чтобы записать уравнение гидролиза бинарного соединения водным раствором щелочи или кислоты, нужно:

1) в первую очередь, представить, какие продукты образовались бы при обычном гидролизе водой.

Например, мы хотим записать уравнение щелочного гидролиза соединения PCl5 действием водного раствора KOH.

Тогда, согласно этому пункту, мы должны вспомнить какие продукты образуются при обычном гидролизе. В нашем случае это HCl и H3PO4

2) посмотреть на отношение этих продуктов к средообразователю (кислоте или щелочи) – реагируют они или нет. Если продукты обычного гидролиза реагируют со средообразователем, то запомнить продукты этого взаимодействия.

Возвращаясь к нашему случаю с PCl5, мы должны посмотреть на то, как относятся к щелочи продукты обычного гидролиза, т.е. HCl и H3PO4. Оба данных соединения в водном растворе являются кислотами, в связи с чем существовать в щелочной среде не могут. В частности, с гидроксидом калия они прореагируют, образуя соответственно соли KCl и K3PO4

3) в конечном уравнении в качестве продуктов записать то, что получается при взаимодействии со средообразователем. Воду при этом мы пока не пишем, вывод о том, писать ее или нет, делаем после попытки уравнивания реакции без нее.

Таким образом, следуя этому принципу, запишем:

Уже до начала расстановки коэффициентов очевидно, что есть необходимость в записи в качестве одного из продуктов реакции воды, поскольку в левой части присутствует водород, а в правой его нет.

Таким образом, суммарная схема реакции будет иметь вид:

А само уравнение после расстановки коэффициентов будет выглядеть так:

Следует отметить, что щелочной гидролиз ионных соединений чаще всего не отличается от обычного гидролиза действием воды, поскольку чаще всего ни один продукт обычного гидролиза с щелочью не взаимодействует.

Аналогично, можно сказать, что кислотный гидролиз ковалентных бинарных соединений не будет отличаться от водного.

В связи с этим имеет смысл более детально рассмотреть кислотный гидролиз ионных бинарных соединений и щелочной гидролиз ковалентных бинарных соединений.

Кислотный гидролиз ионных бинарных соединений

Со всеми перечисленными ионными бинарными соединениями, участвовавшими в реакциях обычного гидролиза водой, можно записать соответствующие уравнения их кислотного гидролиза. Возьмем в качестве примера водный раствор соляной кислоты:

Обратите внимание, что вместо водородного соединения в случае нитридов металлов образуется продукт его взаимодействия с соляной кислотой (NH3 + HCl = NH4Cl). Следует отметить, что нитриды металлов – единственный случай, когда при кислотном гидролизе ионного бинарного соединения не выделяется газообразное водородное соединение. Связано это с тем, что по сравнению с другими водородными соединениями неметаллов, только у аммиака основные свойства выражены в значительной степени.

Как можно заметить, кислотный гидролиз гидридов металлов также относится к окислительно-восстановительным реакциям. В результате этой реакции образуется простое вещество водород. Связано это с тем, что водород с кислотами не реагирует.

Щелочной гидролиз ковалентных бинарных соединений

Щелочному гидролизу среди ковалентных соединений подвержены все те же бинарные соединения, что и обычному гидролизу водой, то есть галогениды фосфора и кремния:

Щелочной гидролиз галогенидов фосфора III в ЕГЭ не встретится из-за специфических свойства фосфористой кислоты.

Тем не менее, для тех, кто хочет, ниже предоставляю пример такого рода уравнений с пояснением:

Поскольку фосфористая кислота является двухосновной, то несмотря на наличие трех атомов водорода, при ее реакции с щелочью на атомы металла способны заместиться только два атома водорода.


источники:

http://chemrise.ru/theory/lessons11/binary

http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/neobratimyj-gidroliz-binarnyh-soedinenij