Не могу решить уравнение что делать

Как решить любую задачу? Часть 1. Алгебра

Обучение математике в школе построено по принципу «повторяй за мной». Учитель дает какой-то метод решения или некий алгоритм, а ученики с помощью этого метода решают задачи. Это похоже на то, как мастер обучает подмастерье. Мастер показывает инструменты и объясняет, что с их помощью можно делать — вот пила, ей отпиливают дерево. А вот рубанок – он нужен для того, чтобы придать отпиленному куску определенную форму. И использовав эти и другие инструменты можно сделать, например, табуретку. Так же в школе: для решения квадратных уравнений удобно пользоваться дискриминантом и теоремой Виета, для рациональных неравенства – хорошо подходит метод интервалов и т.д.

Это, конечно, достаточно эффективный способ обучения, но для того, чтобы набирать на ЕГЭ 80+ баллов этих навыков не хватит. Нужно нечто большое – нужно уметь понять, как решается задача, даже если не видел ничего аналогичного раньше. Это как по совершенно новому для тебя предмету догадаться какие инструменты нужно применить — «сделайте стол, столы вы еще не делали, но делали стулья».

Придумывать новое решение самостоятельно – это тоже навык, который надо развивать. Нужно привыкнуть не бояться нового, уметь задавать себе правильные вопросы и лояльно относиться к своим ошибкам. В этой статье я написала, что помогает лично мне и моим ученикам решать новые задачи.

Предупреждаю: это всё работает только если вы знаете необходимую теорию. То есть уметь отличать рубанок от ножовки всё-таки надо. 🙂

5 принципов которые помогут решить задачу:

Не знаешь, что делать – делай, что можешь. Некоторые преподаватели это правило еще формулируют так: «давайте что-нибудь сделаем, а потом подумаем». Новая задача потому и новая, что приступая к решению, ты понятия не имеешь как ее решать. Но почти всегда можно что-то записать по-другому, как-либо преобразовать, изменить. Попробуй, вдруг это верный шаг? Зачастую ученики даже не пытаются делать так, потому что не видят ответа на вопрос: «ну сделаю, а что дальше?». В этом смысле они похожи на водителей, которые ждут пока зеленый сигнал светофора загорится сразу вдоль всего маршрута — действительно, зачем ехать, ведь вон там впереди горит красный! Правильный подход тут, конечно же, иной – пока будешь ехать, сигнал, возможно, уже смениться на зеленый. Или нет. И тогда тебе поможет следующий принцип:

Не бойся «тупиков» — просто начинай решение заново, главное не сдаваться. Нет ничего плохого в том, чтоб решая задачу, пойти не тем путем даже десяток раз. Школьные учебники как-то незаметно приучают нас к тому, что решение должно быть прямое и четкое – «раз, два, три!», ведь в них оно записано именно так. А «муки поиска» решения всегда остаются за скобками, выбрасываются как лишнее, чтоб не захламлять суть. Вот и получается ситуация как на картинке.

Поэтому знай, что…

Задача не обязана решаться с «полпинка». И чем сложнее задача, тем больше тупиков ты обойдешь перед решением. И это хорошо! Главное помни: «прогулки по тупикам» — не пустая трата времени и не потери! Как раз наоборот — в такие моменты ты развиваешь мозги сильнее всего. Когда ты ищешь новое решение, у тебя прямо в этот момент формируются в мозгу новые нейронные связи, и ты в буквальном смысле становишься умнее. Более того, вот этот поиск неведомого решения — на самом деле и есть настоящая математика! Да-да, для кого-то это будет новостью, но математика это не когда ты быстренько подставляешь «цифирьки в формулки» и тут же считаешь ответы, решая задачи по аналогии, а когда ты долго-долго перебираешь разные методы решений, пробуешь применить различные идеи, крутишь задачу так и сяк, и в какой-то момент тебя озаряет, и ты находишь путь, ведущий к ответу. А в поиске этих озарений тебе поможет принцип…

Случайности не случайны. Если ты заметил какое-то совпадение, то, возможно, это не совпадение, а вполне себе ключ к решению. Все переменные стоят внутри одинаковых выражений? У логарифмов совпадают основания? Или все знаменатели дробей являются квадратами друг друга? Подумай — как это можно использовать? Подробнее об этом поговорим ниже.

Если закрыта одна дверь, открыта другая. Не циклись на одной мысли. Возможно, к решению можно подойти вообще с другой стороны. Но перед тем как зачеркивать очередную попытку решения – внимательно проверь, может быть ты просто сделал в нем какую-то простенькую ошибку и поэтому не получается дорешать до конца?

8 вопросов, которые помогут решить почти любое задание в алгебре

Решая задачу, мы ищем ответ на вопрос задания – нужное значение переменной, интервал решений или еще что-то в этом роде. И чтобы прийти к ответу на этот главный вопрос нужно уметь задавать себе промежуточные, опорные вопросы, которые могут натолкнуть на правильный путь рассуждений. Вот эти вопросы:

1. Что передо мной (уравнение, неравенство, выражение)? Как обычно решается такой тип задач?

— Что передо мной?
— Квадратное неравенство.

— Как решаются квадратные неравенства?
— Методом интервалов.


\(x∈[-10;10]\)

Пример 2: Решите уравнение \(\cos⁡\) \(\frac<π(x-7)><3>\) \(=\) \(\frac<1><2>\)
— Что передо мной?
— Простейшее тригонометрическое уравнение.


\(\frac<π(x-7)><3>\) \(=±\) \(\frac<π><3>\) \(+2πn,n∈Z\)

— А теперь что передо мной?
— Хм… Выглядит странно, но похоже на линейное уравнение, так как тут только одна переменная (\(x\)) и она в первой степени.

— Как решаются линейные уравнения?
— Нужно избавиться от знаменателей, раскрыть все скобки и перенести известные вправо, а неизвестные влево, в общем, привести уравнение к виду \(x=[число]\).

2. Решал ли я похожие задачи? Как я их решал?

— Что передо мной?
— Тригонометрическое уравнение (не простейшее).

— Как обычно решаются тригонометрические уравнения?
— Уравнение преобразовывается с помощью формул, пока невозможно будет сделать замену. Очевидно, что тут сразу можно сделать замену.

Получилось кубическое уравнение.

— Решал ли я похожие задачи? Как я их решал?
— Обычно кубические уравнения я решал либо методом группировки, либо делением многочлена на многочлен.

3. Какие формулы я вижу / какие формулы можно применить? Что надо сделать, чтоб их можно было применить?

— Какие формулы я тут вижу?
— Полностью – никаких. Но вот такое же произведение синус на косинус есть в формуле двойного угла синуса:

4. Какие «неслучайности» я вижу? Как их можно использовать?

— Какие «неслучайности» я вижу?
— Очевидно, что выражения \((4x-8)\) и \((x-8)\) с той и другой стороны – это неспроста.

— Как их можно использовать?
— Поделить на эти выражения нельзя. Можно попробовать перенести то, что стоит справа в левую часть.

Теперь можно одинаковые выражения вынести за скобку.

— Какие «не случайности» можно заметить?
— И \(9\), и \(27\) являются степенями тройки: \(3^2=9\), \(3^3=27\).

— Как это можно использовать?
— Можно заменить \(9\) на \(3^2\), а \(27\) на\( 3^3\), вот так:

А теперь можно применить свойство степеней: \((a^n)^m=a^\), \(\frac\) \( =a^\).

5. Что я в принципе могу сделать? Какие преобразования допустимы/возможны?

— Что можно сделать с этим выражением?
— Можно вынести множители из-под знака корня.

— Какие еще преобразования здесь возможны?
— Можно вынести за скобки \(4\sqrt<2>\).

— Что еще можно сделать?
— Применить формулу двойного угла \(\cos⁡2α=1-2\sin^2⁡α \)

6. Что мне мешает? Как можно сделать выражение/уравнение/неравенство проще? Как мне было бы удобнее? Что я могу сделать, чтоб стало удобнее?

— Как можно сделать уравнение сильно проще?
— Если избавиться от корня, то уравнение станет проще.

— Как можно избавиться от корня?
— Можно возвести обе части уравнения в квадрат.

— Как можно упростить уравнение?
— Можно избавиться от знаменателя.

— Как обычно избавляются от знаменателя?
— Умножением обеих частей уравнения на наименьший общий знаменатель.

— Как было бы удобнее?
— Было бы удобнее, чтоб аргументы у логарифмов были одинаковые.

— Что надо сделать, чтоб аргументы у логарифмов были одинаковые?
— Вынести квадрат вперед и каким-то образом перевернуть дробь.

— Как можно перевернуть дробь?
— Можно использовать степень \(-1\).

— Что можно сделать теперь?
— Логарифмы полностью одинаковые значит можно либо сделать замену, либо вынести их за скобку.

7. Чего от меня хочет задача? Когда будет выполняться условие задачи?

Допустим, вы никогда не сталкивались с дробными неравенствами или забыли, как их решать. Давай просто порассуждаем.

— Чего от меня хочет задача?
— Чтоб левая часть была положительна.

— А в каком случае дробь (не именно эта, а вообще любая) будет больше нуля? Короче говоря, когда мы делением получим знак плюс?
— Когда будем делить положительное на положительное, либо отрицательное на отрицательное. Иными словами — числитель и знаменатель должны иметь одинаковый знак (и при этом знаменатель не равен нулю).

— А когда будет положителен числитель?
— Когда икс больше трех. Если же икс меньше трех, то числитель будет иметь знак минус.

— Тот же вопрос про знаменатель?
— Знаменатель положителен при иксе большем \(1\), и отрицателен при иксе меньше \(1\).

— Так когда же будет выполняться условие задачи?
— При иксе большем \(3\) (там в дроби и сверху и снизу плюс) и при иксе меньше \(1\) (в этом случае и числитель, и знаменатель имеют знак минус).

Всё, неравенство решено. Заметим, что рассказанное выше — это логическая «начинка» метода интервалов. Помните такой? «Приравняйте к нулю, найдите корни нанесите их на числовую ось, расставьте знаки…» Вот он.

— Чего от меня хочет задача?
— Чтоб я нашел такие иксы, при которых слева – ноль.

— А что у нас стоит слева?
— Сумма двух квадратов.

— В каком случае сумма квадратов будет равняться нулю?
— Хм… Квадрат не может быть отрицательным, он всегда больше либо равен нуля. А мы складываем два таких выражения. Значит, нам нужны такие иксы, при которых оба квадрата ОДНОВРЕМЕННО обратятся в ноль, потому что в остальных случаях сумма будет больше нуля.

8. Могу ли я сделать какую-нибудь замену?

— (вспоминаем предыдущие пункты) Какие неслучайности я вижу?
— В скобке вторая дробь – это перевернутая первая.

— Как это можно использовать?
— Ну…

— Могу ли я сделать какую-либо замену?
— Да, можно заменить \(\frac<2>\) на \(t\). Тогда вторая дробь будет \(\frac<1>\) .

— Какие преобразования тут возможны в принципе?
— О! Можно перенести всё влево и разложить на множители по формуле разности квадратов!

— Что можно теперь сделать?
— Можно привести выражения в скобках к общему знаменателю.

Итого: приучайтесь рассуждать в математике. Не мыслите шаблонами, а ищите путь. И написанные выше вопросы вам в этом помогут. Успешных решений!

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Не могу решить уравнение что делать

Нам уже известны формулы для решения квадратных уравнений. А что делать, если встретится уравнение более высокой степени ? Оказы вается, что для уравнений третьей и четвёртой степени есть формулы, позволяющие найти корни (но они редко используются на практике ввиду их громоздкости), а для уравнений пятой степени и выше доказано, что таких формул не существует. Таким образом, у нас не выйдет в общем случае решить уравнение третьей или более высокой степени. Но существует ряд приёмов, позволяющих решить некоторые специальные виды уравнений. К их рассмотрению мы сейчас и перейдём.

Решите уравнение: `x^3 +4x^2 — 2x-3=0`.

Заметим, что `x=1` является корнем уравнения (значение многочлена при `x=1` равно сумме коэффициентов многочлена). Тогда по теореме Безу многочлен `x^3 +4x^2 -2x -3` делится на многочлен `x-1`. Выполнив деление, получаем:

`x^3 +4x^2 -2x -3=0 hArr (x-1)(x^2 + 5x +3) =0 hArr`

Обычно кубические уравнения решают именно так: подбирают один корень, выполняют деление уголком, после чего остаётся решить только квадратное уравнение. А что делать, если у нас уравнение четвёртой степени? Тогда придётся подбирать корень два раза. После подбора первого корня и деления останется кубическое уравнение, у которого надо будет подобрать ещё один корень. Возникает вопрос. Что делать, если такие «простые» числа как `+-1`, `+-2` не являются корнями уравне ния? Неужели тогда надо перебирать всевозможные числа? Ответ на этот вопрос даёт следующее утверждение.

Если несократимая дробь `p//q` (`p` — целое, `q` — натуральное) является корнем многочлена с целыми коэффициентами , то сво бодный член делится на `p` , а старший коэффициент делится на `q`.

Пусть несократимая дробь `p//q` — корень многочлена (8). Это означает, что

`a_n (p/q)^n +a_(n-1)(p/q)^(n-1) + a_(n-2) (p/q)^(n-2)+ . «+a_2 (p/q)^2 +a_1(p/q)+0=0`.

Умножим обе части на `q^n`, получаем:

`a_n p^n + a_(n-1) p^(n-1) q+a_(n-2) p^(n-2) q^2 + . + a_2 p^2 q^(n-2) +a_1 pq^(n-1)+a_0q^n=0`.

Перенесём в правую часть, а из оставшихся слагаемых вынесем `p` за скобки:

Справа и слева в (14) записаны целые числа. Левая часть делится на `p=>` правая часть также делится на `p`. Числа `p` и `q` взаимно просты (т. к. дробь `p//q` несократимая), откуда следует, что `a_0 vdotsp`.

Аналогично доказывается, что `a_n vdotsq`. Теорема доказана.

Как правило, предлагаемые вам уравнения имеют целые корни, поэтому в большинстве задач используется следующее: если у многочлена с целыми коэффициентами есть целые корни, то они являются делителями свободного члена.

а) `x^4+4x^3-102x^2-644x-539=0`; (15)

б) `6x^4-35x^3+28x^2+51x+10=0`. (16)

а) Попробуем найти целые корни уравнения. Пусть `p` — корень. Тогда `539vdotsp`; чтобы найти возможные значения `p`, разложим число `539` на простые множители:

Поэтому `p` может принимать значения:

Подстановкой убеждаемся, что `x=-1` является корнем уравнения. Разделим многочлен в левой части (15) уголком на `x+1` и получим:

Далее подбираем корни у получившегося многочлена третьей степени. Получаем `x=-7`, а после деления на `(x+7)` остаётся `(x+1)(x+7)(x^2-4x-77)=0`. Решая квадратное уравнение, находим окончательное разложение левой части на множители:

1) После того, как найден первый корень, лучше сначала выполнить деление уголком, и только потом приступать к поиску последующих корней. Тогда вычислений будет меньше.

2) В разложении многочлена на множители множитель `(x+7)` встретился дважды. Тогда говорят, что `(–7)` является корнем кратности два. Аналогично говорят о корнях кратности три, четыре и т. д.

б) Если уравнение имеет рациональный корень `x_0=p/q`, то `10vdotsp`, `6vdotsq`, т. е. `p in<+-1;+-2;+-5;+-10>`; `qin<1;2;3;6>`.Возможные варианты для `x_0`:

Начинаем перебирать числа из этого списка. Первым подходит число `x=5/2`. Делим многочлен в левой части (16) на `(2x-5)` и получаем

Заметим, что для получившегося кубического уравнения выбор рациональных корней заметно сузился, а именно, следующие числа могут быть корнями: `x_0=+-1,+-2,+-1/3,+-2/3`, причём мы уже знаем, что числа `+-1` и `+-2` корнями не являются (так как мы их подставляли раньше, и они не подошли). Находим, что `x=-2/3` — корень; делим `3x^3-10x^2-11x-2` на `3x+2` и получаем:

Решаем квадратное уравнение: `x^2-4x-1=0 iff x=2+-sqrt5`.

К сожалению, уравнения не всегда имеют рациональные корни. Тогда приходится прибегать к другим методам.

Разложите на множители:

а) `x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=`

Таким образом, сумму четвёртых степеней, в отличие от суммы квадратов, можно разложить на множители:

в) Вынесем `x^2` за скобки и сгруппируем:

Обозначим `x+2/x=t`. Тогда `x^2+4+4/x^2=t^2`, `x^2+4/x^2=t^2-4`, выражение в скобках принимает вид:

В итоге получаем:

Этот приём иногда используется для решения уравнений четвёртой степени; в частности, с его помощью решают возвратные уравнения (см. пример 12 е).

г)* Можно убедиться, что никакой из рассмотренных выше методов не помогает решить задачу, а именно: рациональных корней уравнение не имеет (числа `+-1` и `+-2` – не корни); вынесение числа `x^2` за скобки и группировка слагаемых приводит к выражению

Если здесь обозначить `4x-13/x=t`, то `x^2-2/x^2` через `t` рационально не выражается.

Прибегнем к методу неопределённых коэффициентов. Пусть

Попробуем подобрать коэффициенты `a`, `b`, `c`, `d` так, чтобы (17) обратилось в верное равенство. Для этого раскроем скобки в правой части и приведём подобные слагаемые:

Приравняем в (18) коэффициенты при одинаковых степенях в обеих частях уравнения. Получим систему уравнений:

Мы будем пытаться найти целочисленные решения системы (19). Найти все решения системы (19) не проще, чем решить исходную задачу, однако нахождение целочисленных решений – разумеется, если они есть – нам по силам.

Рассмотрим четвёртое уравнение. Возможны только два принципиально различных случая:

2) `b=2` и `d=-1`. Рассмотрим каждый из них. Подставляем значения `b` и `d` в первые три уравнения:

Из первого и третьего уравнений системы получаем `c=5/3`; `a=-17/3`, что не удовлетворяет второму уравнению, поэтому система решений не имеет; пара чисел `b=1` и `d=-2` не подходит.

Эта система имеет одно решение `a=-7`, `c=3`. Значит, числа `a=-7`, `b=2`, `c=3`, `d=-1` являются решением системы (19), поэтому

Далее каждый из квадратных трёхчленов можно разложить на множители.

Во многих ситуациях степень уравнения можно понизить с помощью замены переменных.


источники:

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

http://zftsh.online/articles/5013