Не решая квадратное уравнение определить знаки корней

Не решая квадратное уравнение определить знаки корней

КВАДРАТНЫЙ ТРЕХЧЛЕН III

§ 53. Исследование знаков корней квадратного уравнения по его коэффициентам

Используя теорему Виета, можно, не решая уравнения x 2 + px + q = 0. определить, какими будут его корни: положительными или отрицательными. Но при этом, конечно, нужно быть уверенным в том, что рассматриваемое уравнение имеет корни. Если же корней нет, то говорить о знаках корней не имеет смысла. Поэтому на протяжении всего этого параграфа мы будем предполагать, что рассматриваемое приведенное квадратное уравнение x 2 + px + q = 0 имеет корни, то есть дискриминант его неотрицателен.

1) Пусть q > 0; тогда оба корня имеют одинаковые знаки, поскольку x1 • х2= q > 0.
Если к тому же р 0, значит, оба корня положительны.
Если р > 0, то x1 + х2 = — р 0, то x1 + х2 = — р 0. Это возможно только тогда, когда положительный корень больше абсолютной величины отрицательного корня.
При р = 0 x1 + х2 = 0, откуда x1= — х2 в этом случае корни равны по абсолютной величине и противоположны по знаку.

3) Осталось рассмотреть случай, когда q = 0. Тогда x1 • х2 = 0, поэтому хотя бы один из корней равен нулю.
Пусть для определенности x1 = 0, тогда другой корень найдется из условия x1 + х2 = — р, откуда х2 = — р. Значит, в этом случае один корень равен нулю, а другой представляет собой число, противоположное коэффициенту р.
Если же и р = 0, то уравнение имеет , два равных корня: x1= х2 = 0.

Полученные результаты исследования знаков корней представлены в таблице .

Еще раз отметим, что приведенные здесь рассуждения верны лишь в предположении, что исследуемое уравнение имеет действительные корни, то есть его дискриминант неотрицателен.

Рассмотрим несколько примеров на исследование знаков корней квадратных уравнений.

1) x 2 — 8х — 9 = 0. Дискриминант этого уравнения равен D = 64 + 36 = 100 > 0. Поэтому уравнение имеет два различных действительных корня.
Вследствие того, что x1 • х2 = — 9, корни должны иметь разные знаки,
а так как x1 + х2 = 8, то абсолютная величина отрицательного корня меньше положительного корня.

2) x 2 + 7х + 10 = 0. Дискриминант этого уравнения равен D = 49 — 40 = 9 > 0. Поэтому уравнение имеет два различных действительных корня.
Так как x1 • х2 = 10 > 0, то корни имеют одинаковые знаки.
Кроме того, x1 + х2 = —7, значит, оба корня отрицательны.

3) x 2 — х + 1 = 0. Для данного уравнения

D = (—1) 2 — 4 = — 3 2 + bx + c = 0 . Для этого сначала нужно посредством деления на а привести данное уравнение к приведенному квадратному уравнению x 2 + b /a х + c /a = 0, а затем для этого уравнения провести описанные выше рассуждения.

Пусть, например, нужно исследовать знаки корней уравнения —3x 2 + 5х — 2 == 0. Дискриминант этого уравнения равен D = 25 — 24 = 1 > 0. Поэтому оно имеет два различных действительных корня.

Разделив обе части уравнения на — 3, получим: x 2 — 5 /3х + 2 /3 = 0. Отсюда видно, что корни данного уравнения имеют одинаковые знаки, так как x1 • х2 = 2 /3 > 0. Кроме того, x1 + х2 = 5 /3 > 0. Следовательно, оба корня положительны.

Не решая данных уравнений (№ 391—400), определить знаки их корней:

Проверить себя, да и вообще исследовать квадратные уравнения полные и приведенные можно, с помощью соответствующих алгоритмов в программе EXCEL. Алгоритм можно усовершенствовать для отображения промежуточных результатов вычислений.

401. При каких значениях а корни уравнения

имеют одинаковые знаки и при каких — разные?

402. При каких значениях а корни уравнения

имеют одинаковые знаки и при каких — разные?

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Полное

Неполное

Приведенное

7х 2 +9х+2=0

y 2 –3у–4=0

ax 2 –1=0

x 2 – 5? x? =0

6x 2 +x=0

x 2 –3x–5–=0

5m 2 +2(–1)m+7=0

8x 2 –0,75=0,53

x 2 :3=3

2p 2 –3? p? –2=0

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Методы решения квадратных уравнений и уравнений, к ним сводящихся

    Разделы: Математика

    Планируя урок, мы рассматриваем его как целостную совокупность ориентированных на достижение определенной цели взаимодействующих управленческих функций, выполняемых одновременно или в некоторой последовательности. К этим управленческим функциям относятся:

    планирование, то есть определение целей и средств их достижения;
    организация, то есть создание и совершенствование взаимодействия между управляемой и управляющей системами для выполнения планов;
    контроль, то есть сбор информации о процессе выполнения намеченных планов;
    регулирование, то есть корректировка планов и процесса их реализации;
    анализ, то есть изучение и оценка процесса результатов выполнения планов.

    Этот вопрос можно решить при помощи организации уроков “по вертикали”, то есть уроков, на которых работают подгруппы разных классов, что позволяет старшим детям обратиться к ранее изученному материалу на другом качественном уровне, а младшим школьникам в диалоге со старшими товарищами систематизировать изученный материал и обобщить способы действия с ним. Варианты таких уроков:

    – “Признаки равенства треугольников” в 7-м классе и “Признаки подобия треугольников” в 8-м классе;
    – “Площади” в 8-й классе и “Площадь поверхности многогранников” в 11-й классе;
    – “Формулы сокращенного умножения” в 7-м классе и “Действия с алгебраическими дробями” в 8-м классе; и т. д.

    Одним из таких уроков является урок по теме “Методы решения квадратных уравнений и уравнений, к ним сводящимся”, который проводится по окончании изучения темы “Квадратные уравнения” в 8-м классе и в теме “Повторение” в 11-м классе. Уравнения и неравенства – наиболее распространенные типы задач, решаемых учащимися в школе. По сложившейся традиции эти задачи всегда предлагаются и на школьных выпускных экзаменах и на вступительных экзаменах в вузы. В связи с тем, что изменяется форма проведения экзаменов в виде тестов, возникает еще одна проблема: надо научить учащихся быстро находить правильный ответ.

    Цель урока: Использовать квадратное уравнение как модель, описывающую различные зависимости между величинами.

    научить учащихся использовать данную модель для планирования своей работы;
    анализировать математическую модель с точки зрения поиска рациональных методов решения;
    формировать целостное представление о применении данной математической модели;
    показать применение данной математической модели в других темах математики.

    Данному уроку предшествовал урок зачет, когда учащиеся 8-го класса отвечали на заранее определенные вопросы учащимся 11-го класса, работая в парах:

    1. Какие уравнения называются квадратными?

    2. Какое квадратное уравнение называется полным, неполным?

    3. Какое уравнение называется приведенным, не приведенным?

    4. Является ли квадратным каждое из следующих уравнений:

    5. Решите уравнения:
    а) 3х 2 –21=0 б) 0,5х 2 –2=0 в) 5х 2 –8х=0

    6. Может ли уравнение вида ах 2 +с=0 не иметь действительных корней?

    7. Может ли неполное квадратное уравнение быть приведенным?

    8. Какое выражение называется дискриминантом?

    9. Напишите формулы для нахождения корней квадратного уравнения.

    10. Решите квадратные уравнения:
    а) 3х 2 –5х+2=0 б) 3m 2 x 2 –mx–4=0 в) (m+n)y 2 –2my+m–n=0

    11.Решите относительно z уравнение: (a–z):(1–az)=(1–bz):(b–z)

    12. Как по дискриминанту определить, сколько и каких корней имеет квадратное уравнение?

    13.Как читается теорема Виета?

    14. Как читается обратная теорема Виета?

    15. Как, не решая уравнения, определить знаки его корней?

    16. Каков порядок составления квадратных уравнений по известным его корням?

    17. Один из корней уравнения х 2 – 6х – q = 0 больше другого на 2. Найдите q.

    18. Определите знаки корней, не решая уравнений:

    a) 4х 2 –11х+7=0 б) Зх 2 – 8х + 6 =0 в) 9х 2 – 6х + 1 = 0 г) х 2 + 2х – 15 = 0

    19. Найдите корни уравнений, воспользовавшись теоремой Виета:

    а) х 2 – х – 6 = 0 б) z 2 +2az–8a 2 =0

    20. При каком условии сумма корней уравнения х 2 + рх + q = 0 равна их произведению?

    21. Что называют квадратным трехчленом?

    22. Как разложить квадратный трехчлен на множители?

    23. Разложите на множители трехчлены: 2х 2 + 5х – 3; х 2 – х – 56.

    24. Какие уравнения называются биквадратными?

    Второй этап работы – урокобобщение, когда при той же парной работе материал темы был систематизирован в схемах и таблицах, которые далее прилагаются к материалам. Эти таблицы определяют основное содержание структуры всей темы, в них включены формулы рационального счета, не пользующиеся широкой известностью, но часто спасающие учащихся на вступительных экзаменах в вузы от громоздких вычислений и экономящих время на решение более сложных задач.

    Третий этап – повторительно-обобщающий урок, где реализуется работа с моделью квадратного уравнения.

    Рассмотрим реализацию основных направлений учебно-управленческих умений на предлагаемом уроке:

    Планирование осуществлялось через:

    справочник, где материал систематизирован в схемах и таблицах, которые определяют основное содержание структуры всей темы;
    работу с одной моделью;
    использование модели для планирования своей работы;
    формирование целостного представления о применении данной модели.

    Организация осуществлялась при помощи:

    работы в парах;
    четкой постановки целей.

    1. Обобщить и повторить методы решения квадратных уравнений и уравнений, сводящихся к ним.

    2. Увидеть использование этих методов при решении уравнений в других темах алгебры старших классов.

    Для 11-го класса:

    1. Повторить рациональные методы решения квадратных уравнений и уравнений, сводящимся к ним, для подготовки к тестированию по алгебре и началам анализа.
    2. Разделить обязанности при работе над уравнением.

    решения восьмиклассников проверяют старшеклассники, а одиннадцатиклассники рассказывают, как они решают незнакомые для восьмиклассников уравнения (взаимоконтроль);
    проверка решения группы (пары) всеми учащимися.

    через систему жетонов;
    безнаказанность ошибочного решения;
    поощрение верных идей по поиску рациональных способов решения, по поиску ошибки.

    анализ модели с точки зрения поиска рациональных способов решений;
    подведение итогов урока: Что узнали восьмиклассники? Что узнали одиннадцатиклассники? Что дала работа в парах?

    На уроке учащиеся работают парами восьмиклассник — одиннадцатиклассник, задачей которых является быстро и правильно отвечать на поставленные вопросы и зарабатывать баллы, из которых в конце урока складывается их совместная оценка.

    Какие виды квадратных уравнений вам известны?

    Учащиеся перечисляют известные им виды уравнений и получают задание: заполнить таблицу, распределив уравнения по видам.

    Уравнение

    m 2 + –5=0

    Таблицу заполняют учащиеся 8-го класса, а учащиеся 11-го класса производят контроль. У доски одна пара выполняет такую же работу, затем класс проверяет правильность заполнения таблицы.

    II. Занятие проводится в форме аукциона. Товаром на аукционе являются уравнения. Каждая пара, согласовав свое решение, может купить лот, стоимость которого от 1 до 5 баллов. Тот, кто дает максимальную цену, рассказывает решение уравнения, зарабатывая стоимость лота. В случае ошибочного решения часть баллов снимается.

    Предлагается устно решить уравнение х 2 – 8х – 20 = 0. Учитель предлагает купить лот, не показывая вида уравнения. Кто из учащихся первым дает большее количество баллов, тот становится покупателем. К доске выходит пара. восьмиклассник подробно объясняет решение уравнения, а одиннадцатиклассник следит за решением, и если есть замечания, то дополняет.

    Выставляется на продажу задание: Определяя, имеет ли квадратное уравнение 2х 2 + 5х – 7 = 0 корни, учащиеся дали два решения:

    1). Так как а = 2, b = 5, с= 7, D= 81, D > 0, значит, уравнение имеет два корня.
    2). Так как а > 0, с 0.Уравнение имеет два корня.

    Кто решил верно?

    К доске выходит пара, которая купила этот лот. Восьмиклассник комментирует решение, выбирает рациональный способ. Одиннадцатиклассник следит за ответом, помогает, поправляет.

    Продается «кот в мешке».

    На продажу выставляются 3 уравнения, которые надо решить рациональным способом, но лот предлагается купить, не видя уравнений.

    1). 1999у 2 –1997у–2=0

    Ученик должен решить его так:

    Т.к. 1999 + (–1997) + (–2) = 0, то у1 = 1, у2 = с/а, т.е. у2 = –2/1999.

    2). 67х 2 –106х–173=0

    Ученик должен решить его так:

    3). 2z 2 –11z + 12 = 0

    Ученик должен рассуждать так: 2z 2 –11z+12=0, z 2 – 11z + 24 = 0. По теореме, обратной теореме Виета т1 = 8, т2 = 3. Корни искомого уравнения будут равны: z1=8/2 =4 и z2=3/2=1,5

    Разыгрываются два уравнения, которые предлагаются решить всем письменно рациональными способами. Каждое уравнение продается отдельно.

    1. (х+5) 4 + 8(х+5) 2 –9=0

    2. (4/49)у 2 + 9 + (12/7)у = 0

    Две пары учащихся решают у доски эти уравнения.

    Выставляется на продажу три уравнения. Каждая пара покупает одно из следующих уравнений, которое она должна решить

    1. 2001sin 2 x – 2000sinx – 1 = 0

    2.

    3.

    Каждое уравнение, кроме того, решается на доске парами, причем первую часть решения выполняет старшеклассник, рассказывая восьмикласснику о своих действиях, а квадратное уравнение решает восьмиклассник, одиннадцатиклассник же выполняет роль контролера.

    Подводя итог урока, выясняется, что нового узнали восьмиклассники, а что одиннадцатиклассники? Что дала работа в парах? Домашнее же задание дает возможность еще раз проанализировать работу на уроке, придумав уравнения по данной теме.

    Еще в “Великой дидактике” Яном Амосом Коменским было заявлено, что альфой и омегой школы должно быть изыскание способа, при котором учащие меньше бы учили, а учащиеся больше бы учились. Реализация программы общеучебных умений является движением к новой парадигме познавательной компетентности, переходом школы от декларации “учись учиться” к реальному освоению учениками целостной системы методов познания.

    Таблица для распознавания знаков корней


    источники:

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

    http://urok.1sept.ru/articles/103974