Нелинейное уравнение деления отрезка пополам

Нелинейное уравнение деления отрезка пополам

Pers.narod.ru. Обучение. Лекции по численным методам. Приближённое решение нелинейных алгебраических уравнений

1. Приближенное решение нелинейных алгебраических уравнений

Дано нелинейное алгебраическое уравнение

Нелинейность уравнения означает, что график функции не есть прямая линия, т.е. в f(x) входит x в некоторой степени или под знаком функции.

Решить уравнение – это найти такое x* ∈ R: f(x*)=0. Значение x* называют корнем уравнения. Нелинейное уравнение может иметь несколько корней. Геометрическая интерпретация корней уравнения представлена на рис. 1. Корнями уравнения (1) являются точки x1*, x2*, x3*, в которых функция f(x) пересекает ось x.

Методы решения нелинейного уравнения (1) можно разделить на точные (аналитические) и приближенные (итерационные). В точных методах корень представляется некоторой алгебраической формулой. Например, решение квадратных уравнений, некоторых тригонометрических уравнений и т. д.

В приближенных методах процесс нахождения решения, вообще говоря, бесконечен. Решение получается в виде бесконечной последовательности <xn>, такой, что . По определению предела, для любого (сколь угодно малого) ε, найдется такое N, что при n>N, |xn x*| / (x) не меняет знак на отрезке [a, b], т.е. f(x) – монотонная функция, в этом случае отрезок [a,b] будет интервалом изоляции.

Если корней несколько, то для каждого нужно найти интервал изоляции.

Существуют различные способы исследования функции: аналитический, табличный, графический.

Аналитический способ состоит в нахождении экстремумов функции f(x), исследование ее поведения при и нахождение участков возрастания и убывания функции.

Графический способ – это построение графика функции f(x) и определение числа корней по количеству пересечений графика с осью x.

Табличный способ это построение таблицы, состоящей из столбца аргумента x и столбца значений функции f(x). О наличии корней свидетельствуют перемены знака функции. Чтобы не произошла потеря корней, шаг изменения аргумента должен быть достаточно мелким, а интервал изменения достаточно широким.

Решить уравнение x 3 ‑ 6x 2 +3x+11=0, т.е. f(x)= x 3 ‑ 6x 2 +3x+11.

Найдем производную f / (x)=3x 2 -12x+3.

Найдем нули производной f / (x)=3x 2 -12x+3=0; D=144-4*3*3=108;

X1== 0.268;

X2== 3.732;

Так как f / ()>0, то f / (x)>0 при , f / (x) / (x)>0 при . Кроме того, f()= 0. Следовательно, на интервале возрастает от до f(x1)= 3x1 2 -12x1+3=11.39; на интервале — убывает до f(x2)= 3x2 2 -12x2+3=-9.39 и на интервале возрастает до , т.е. уравнение имеет три корня.

Найдем интервалы изоляции для каждого из корней.

Рассмотрим для первого корня отрезок [-2, -1]:

f(-2)= -27 0, f / (x)>0 при т.е. этот отрезок является интервалом изоляции корня.

Рассмотрим для второго корня отрезок [1, 3]:

f(1)= 9>0, f(3)= -7 / (x) 0, f / (x)>0 при т.е. этот отрезок является интервалом изоляции корня.

Метод половинного деления (метод дихотомии или метод бисекции)

Теорема 2. Итерационный процесс половинного деления сходится к искомому корню ξ с любой наперед заданной точностью ε.
Доказательство: Рассмотрим последовательность чисел ξi являющихся приближением корня на i -ом шаге.
ξi=½(bi+ai), i=0,1.
где a0=a; b0=b; ai;bi — границы подынтервалов, в которых f(ai)f(bi) 0 мы ни задали, всегда можно найти такое n , что ч.т.д.
Графически метод дихотомии выглядит следующим образом

|f(c)|≤δ f(a)f(c) 10 = 1024 ≈ 10 3 раз. За 20 итераций (n=2) уменьшается в 2 20 ≈ 10 6 раз.

Пример №1 . Найти экстремум функции: y=5x 2 -4x+1 методом дихотомии, если ε=0.1, а исходный интервал [0,10].

  • Решение
  • Видео решение

Пример №3 . Методом бисекции найти решение нелинейного уравнения на отрезке [a,b] с точностью ε = 10 -2 . Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε = 10 -4 . Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.
sqrt(t)+x 2 = 10, a = 2.6, b = 3

Найдем корни уравнения:
Используем для этого Метод половинного деления (метод дихотомии)..
Считаем, что отделение корней произведено и на интервале [a,b] расположен один корень, который необходимо уточнить с погрешностью ε.
Итак, имеем f(a)f(b) 1 /2(a+b) и вычисляем f(c). Проверяем следующие условия:
1. Если |f(c)| 1 /2 n (b-a)
В качестве корня ξ. возьмем 1 /2(an+bn). Тогда погрешность определения корня будет равна (bn – an)/2. Если выполняется условие:
(bn – an)/2 1 /2(an+bn).
Решение.
Поскольку F(2.6)*F(3) 0, то a=2.8
Итерация 2.
Находим середину отрезка: c = (2.8 + 3)/2 = 2.9
F(x) = 0.113
F(c) = -0.487
Поскольку F(c)•F(x) 0, то a=2.825
Остальные расчеты сведем в таблицу.

Ncabf(c)f(x)
12.632.8-1.6275-0.4867
22.832.9-0.48670.1129
32.82.92.850.1129-0.1893
42.82.852.825-0.1893-0.3386
52.8252.852.8375-0.3386-0.2641
62.83752.852.8438-0.2641-0.2267

Ответ: x = 2.8438; F(x) = -0.2267
Решение было получено и оформлено с помощью сервиса Метод Ньютона онлайн

Пример №2 . Локализовать корень нелинейного уравнения f(x) = 0 и найти его методом бисекции с точностью ε1 = 0,01. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью ε2 = 0,0001. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности ε2 число итераций.

Метод деления отрезка пополам (метод бисекции)

Один из простейших методов нахождения корней нелинейных уравнений состоит в следующем. Допустим, что нам удалось найти отрезок [а, b], на котором расположено искомое значение корня (далее мы предполагаем, что х = с – единственный корень на отрезке [а, b], а если корней на [а, b] несколько, то в результате применения метода деления отрезка пополам и метода хорд (см. разд. 1.1.3) будет найдено приближенное значение одного из корней) х = с, т.е. .

В качестве начального приближения корня с0 принимаем середину этого отрезка: с0=(а+b)/2. Далее исследуем значения функции F(x) на концах отрезков [а, с0] и [с0, b], т.е. в точках а, с0, b. Тот из отрезков, на концах которого F(x) принимает значения разных знаков, содержит искомый корень; поэтому его принимаем в качестве нового отрезка [a1,b1]. Вторую половину отрезка [а, b], на которой знак F(x) не меняется, отбрасываем. В качестве первого приближения корня принимаем середину нового отрезка c1 = (a1+b1)/2 и т.д. Таким образом, k приближение вычисляем как

(1.2)

После каждой итерации отрезок, на котором расположен корень, уменьшается вдвое, а после kитераций он сокращается в 2kраз:

(1.3)

Пусть приближенное решение требуется найти с точностью до некоторого заданного малого числа ε > 0:

(1.4)

Взяв в качестве приближенного решения k-еприближение корня: , запишем (1.4) с учетом обозначения — сk в виде:

(1.5)

Из (1.2) следует, что (1.5) выполнено, если

(1.6)

Таким образом, итерационный процесс нужно продолжать до тех пор, пока не будет выполнено условие (1.6).

Метод деления отрезка пополам проиллюстрирован на рис. 1.1. Пусть для определенности F(a) 0. В качестве начального приближения корня примем с0 = (а + b)/2. Поскольку в рассматриваемом случае F(c0) 0 и F(b) > 0. Таким образом, с[с0, c1],а2=с0, b2 = с1. Аналогично находим другие приближения: с2=(с0+c1)/2и т.д. до выполнения условия (1.6).

Рис. 1.1. Метод деления отрезка пополам

В отличие от большинства других итерационных методов метод деления отрезка пополам всегда сходится, причем можно гарантировать, что полученное решение будет иметь любую наперед заданную точность (разумеется, в рамках разрядности компьютера). При применении этого метода нет необходимости приближенно определять момент достижения требуемой точности, пользуясь, например, условиями близости двух последовательных приближений (2.22) или (2.23) (записанными для скалярного случая). Вместо них применяется соотношение (1.6), гарантирующее выполнение (1.4).

Однако метод деления отрезка пополам довольно медленный. Вычислим число итераций N, требуемое для достижения точности ε. Для этого выясним, пользуясь (1.3), для каких kвыполнено условие (1.6), и возьмем в качестве N наименьшее из таких k. Окончательно получим

(1.7)

где Е(х) – целая часть числа х. Обычно для метода деления отрезка пополам N больше, чем для некоторых других методов, что не является препятствием к применению этого метода, если каждое вычисление значения функции F(x) несложно.

Итерационный процесс можно завершать и тогда, когда значение функции F(x) после k итерации станет меньшим по модулю ε, т.е.

(1.8)

Такое условие окончания итераций аналогично условию (2.24). Действительно, для уравнения (1.1) величина F(ck)есть невязка(см. разд. 2.2.2),полученная на kйитерации.

На рис. 1.2 представлен алгоритм итерационного процесса нахождения корня уравнения (1.1) методом деления отрезка пополам. Здесь сужение отрезка осуществляется заменой границ а или bна текущее значение корня с. При этом значение F(a) вычисляют лишь один раз, поскольку нам нужен только знак функции F(x) на левой границе, а он в процессе итераций не меняется.

Рис. 1.2. Алгоритм метода деления отрезка пополам


источники:

http://math.semestr.ru/optim/dichotomy.php

http://3ys.ru/metody-resheniya-nelinejnykh-uravnenij-i-zadach-linejnoj-algebry/metod-deleniya-otrezka-popolam-metod-bisektsii.html