Нелинейные системы уравнений неравенств двумя переменными

Системы с нелинейными уравнениями

Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) ,(1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 ,(2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 .(4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 .(5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 .(6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 .(8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №43.Нелинейные уравнения и неравенства с двумя переменными.

Перечень вопросов, рассматриваемых в теме:

  • уравнение и неравенство, способы их решения;
  • система уравнений, система неравенств;
  • изображение в координатной плоскости множество решений уравнений, неравенств, систем уравнений, систем неравенств и нахождение площади получившейся фигуры;

Глоссарий по теме

Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

Все уравнения, которые не являются линейными называются нелинейными.

Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

Все неравенства, которые не являются линейными называются нелинейными.

Системой линейных неравенств с двумя переменными называется такая система неравенств, которая в своем составе имеет два и более линейных неравенств с двумя переменными.

Все системы неравенств, которые не являются линейными называются нелинейными.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. Учебник: Алгебра 9 кл с углубленным изучением математики Мнемозина, 2014.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

Сегодня на уроке мы вспомним нелинейные уравнения и неравенства с двумя переменными; системы линейный уравнений и неравенств, а также научимся изображать множество на плоскости, задаваемое нелинейным уравнением и неравенством.

1.Линейные уравнения с двумя переменными.

Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

Все уравнения, которые не являются линейными называются нелинейными.

Например, нелинейные уравнения с двумя переменными. Уравнение с двумя переменными можно заменить равносильным уравнением, в котором правая часть будет нулем, а левая многочленом стандартного вида:

Нелинейные уравнения с двумя переменными изображаются на координатной плоскости различными фигурами, каждое уравнение нужно рассматривать индивидуально.

Найти множество точек координатной плоскости, удовлетворяющих уравнению:

Уравнение запишем в виде (х-у)(х+у) = 0, значит либо х-у=0, либо х

+у=0. Поэтому множество точек удовлетворяющих уравнению – пара пересекающихся прямых.

Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

Сумма неотрицательных слагаемых равна 0 только в одном случае, когда оба слагаемых одновременно равны 0.

Это уравнение имеет единственное решение: х=2; у=-3. Поэтому множество точек удовлетворяющих уравнению – точка (2;-3).

Пусть на координатной плоскости Оху выбрана точка А(а;b), М(х;у) – произвольная точка этой плоскости, R- расстояние от точки М до точки А. Тогда , где R>0. Уравнение окружности с радиусом R и с центром в точке А(а;b).

Запишем уравнение в виде Множеством решения данного уравнения является окружность центром в точке (-1;4) и радиусом 3 единичных отрезка.

Рассмотрим примеры уравнений с двумя переменными, содержащих знак модуля:

Если то х+у=2 Множество решений этого уравнения часть прямой (отрезок АВ), где А(2;0), В(0;2)

Аналогично строятся отрезки в трех оставшихся координатных углах. (рисунок 1)

Рисунок 1 – графика

2.Нелинейные неравенства с двумя переменными.

Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

Все неравенства, которые не являются линейными называются нелинейными.

Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное равенство.

Если каждое решение неравенства с двумя переменными изобразить точкой в координатной плоскости, то получится график этого неравенства. Он является некоторой фигурой.

  1. Некоторые из таких неравенств можно привести к виду у f(x), а нижняя – графиком неравенства у 0 удовлетворяют все те точки, которые находятся от точки А на расстоянии меньшем R, те все точки и только они, расположенные внутри окружности с радиусом R и центром в точке А(а;b). Аналогично, множество решений неравенства есть множество точек , лежащих вне окружности.

Изобразите в координатной плоскости множества решений неравенства .

  1. Начертим график уравнения . Запишем уравнение в виде Множеством решения данного уравнения является окружность центром в точке (-1;4) и радиусом 3 единичных отрезка.
  2. Искомое множество решения неравенства – множество точек, лежащих на окружности и внутри окружности с центром в точке (-1;4) и радиусом 3 единичных отрезка.

3. Системы нелинейных уравнений с двумя переменными.

Система вида , где а,b,с,d,e,f – некоторые числа, называется линейной системой с двумя переменными х и у.

Все системы уравнений, которые не являются линейными называются нелинейными.

Пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство называют решением системы.

Решить систему – значит найти множество ее решений.

Каждое решение уравнения с двумя переменными представляет координаты некоторой его точки его графика. Каждое решение системы есть координаты общих точек графиков уравнений системы. Построим графики этих уравнений и найдем координаты точек пересечения.
Например.

Решить систему уравнений

Первое уравнение системы задает параболу, второе – окружность с центром (-1;3) и радиусом . Окружность и парабола имеют две общие точки (0;1) (-1,3;5,3). Координаты второй точки приближенные (рисунок 2).

Рисунок 2 – решение системы

4. Системы нелинейных неравенств с двумя переменными.

Системой линейных неравенств с двумя переменными называется такая система неравенств, которая в своем составе имеет два и более линейных неравенств с двумя переменными.

Все системы неравенств, которые не являются линейными называются нелинейными.

Рассмотрим систему нелинейных неравенств с двумя переменными на примере:

Изобразить на координатной плоскости Оху фигуру Ф, заданную системой неравенств, и найти площадь фигуры:

Неравенство заменим равносильной системой которая задает множество точек, лежащих на полуокружности и вне ее. А неравенство заменим равносильной совокупностью систем или (рисунок 3)

Рисунок 3 – решение системы

  1. Найти множество точек координатной плоскости, удовлетворяющих уравнению .(рисунок 4)

График уравнения х^2 можно получить из окружности сжатием к оси х в 2 раза.

Рисунок 4 – график уравнения

Заметим, что фигуру, которая получается сжатием окружности к одному из ее диаметров, называют эллипсом.

  1. Уравнение вида — уравнение ромба , где точка (a;b) точка пересечения диагоналей; диагонали ромба соответственно равны .

Рассмотрим частный случай:

Если k=m, то диагонали ромба будут равны, значит заданная фигура – квадрат.

Примеры и разборы решений заданий тренировочного модуля

Графиком данного уравнения является парабола, показанная на рисунке.(рисунок 5)

Рисунок 5 – график

Изобразите в координатной плоскости множества решений неравенства (рисунок 6)

Начертим график уравнения . Графиком данного уравнения является парабола. Нижняя из образовавшихся областей является графиком неравенства

Проверим себя: Например, пара (0;0) является решением неравенства , и принадлежит нижней из образовавшихся областей, значит графиком неравенства 2х+3у Назад Вперёд

Неравенства с двумя переменными. Системы нелинейных неравенств с двумя переменными

Рассмотрим неравенство вида \(f (x; y) > g (x; y)\) , называемое неравенством с двумя переменными. Решением неравенства с двумя переменными называется пара значений переменных, обращающих неравенство в верное числовое неравенство. Решение неравенства с двумя переменными, а тем более системы неравенств с двумя переменными, представляется достаточно сложной задачей. Важной частью умения решать неравенства является умение изобразить на координатной плоскости множество его решений.

Пусть мы имеем неравенство с двумя переменными одного из следующих видов:

Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:

  1. Строим график функции \(y = f(x)\) , который разбивает плоскость на две области.
  2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства является область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.
  3. Если неравенство строгое, то границы области, то есть точки графика функции \(y = f(x)\) , не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции \(y = f(x)\) , включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией. А теперь рассмотрим несколько задач на эту тему.

Пример 1. Какое множество точек задается неравенством \(x · y ≤ 4\) ?

1) Строим график уравнения \(x · y = 4\) . Для этого сначала преобразуем его. Очевидно, что x в данном случае не обращается в 0, так как иначе мы бы имели 0 · y = 4, что неверно. Значит, можем разделить наше уравнение на x.

Получим: \(y = \frac4\) . Графиком данной функции является гипербола. Она разбивает всю плоскость на две области: ту, что между двумя ветвями гиперболы, и ту, что снаружи их.

2) Выберем из первой области произвольную точку, пусть это будет точка (4; 2). Проверяем неравенство: 4 · 2 ≤ 4 – неверно.

Значит, точки данной области не удовлетворяют исходному неравенству. Тогда можем сделать вывод о том, что множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3) Так как неравенство нестрогое, то граничные точки, то есть точки графика функции \(y = \frac<4>\) , рисуем сплошной линией.

Закрасим множество точек, которое задает исходное неравенство, желтым цветом.

Пример 2. Изобразить область, заданную на координатной плоскости системой: \(\left\< \begin y>x^2+2 \\ y+x>1 \\ x^2+y^2\le9 \end \right.\)

Решение: Строим для начала графики следующих функций:

\(y = x^2 + 2\) – парабола,

\(y + x = 1\) – прямая,

\(x^2 + y^2 = 9\) – окружность.

Теперь разбираемся с каждым неравенством в отдельности.

Берем точку (0; 5), которая лежит выше графика функции. Проверяем неравенство: \(5 > 0^2 + 2\) – верно.

Следовательно, все точки, лежащие выше данной параболы \(y = x^2 + 2\) , удовлетворяют первому неравенству системы. Закрасим их желтым цветом.

Берем точку (0; 3), которая лежит выше графика функции. Проверяем неравенство: \(3 + 0 > 1\) – верно.

Следовательно, все точки, лежащие выше прямой \(y + x = 1\) , удовлетворяют второму неравенству системы. Закрасим их зеленой штриховкой.

Берем точку (0; –4), которая лежит вне окружности \(x^2 + y^2 = 9\) . Проверяем неравенство: \(0^2 + (-4)^2 ≤ 9\) – неверно.

Следовательно, все точки, лежащие вне окружности \(x^2 + y^2 = 9\) , не удовлетворяют третьему неравенству системы. Тогда можем сделать вывод о том, что все точки, лежащие внутри окружности \(x^2 + y^2 = 9\) , удовлетворяют третьему неравенству системы. Закрасим их фиолетовой штриховкой.

Не забываем о том, что если неравенство строгое, то соответствующую граничную линию следует рисовать пунктиром. Получаем следующую картинку.

Искомая область – это область, где все три раскрашенные области пересекаются друг с другом.

Напишите неравенство, решением которого является окружность и точки внутри окружности.

Найдите точки, являющиеся решением неравенства.

Найдите точки, являющиеся решением неравенства.

Решите систему неравенств и укажите целые числа, которые являются решением системы неравенств.

Множество решений системы неравенств \(\begin\frac принадлежит промежутку

Координаты каких точек не являются решением неравенства 4 (x – 5) \(\geq\) – 4 (y + 2)?

Какие координаты точек являются решением неравенства 3(2 + x) \(\geq\) 2(y + 3)?


источники:

http://resh.edu.ru/subject/lesson/6123/conspect/

http://itest.kz/ru/ent/matematika/9-klass/lecture/neravenstva-s-dvumya-peremennymi-sistemy-nelinejnyh-neravenstv-s-dvumya-peremennymi