Нелинейные уравнения с одной неизвестной

Нелинейные уравнения с одной неизвестной

Общие сведения о численном решении уравнений с одним неизвестным

Пусть задана непрерывная функция f(x). Требуется найти корни уравнения f(x) = 0 численными методами – это и является постановкой задачи. Численное решение уравнения распадается на несколько подзадач:

  1. Анализ количества, характера и расположения корней (обычно путем построения графика функции или исходя из физического смысла исследуемой модели). Здесь возможны следующие варианты:
    • единственный корень;
    • бесконечное множество решений;
    • корней нет;
    • имеется несколько решений, как действительных, так и мнимых (например, для полинома степени n). Корни четной кратности выявить сложно.
  2. Локализация корней (разбиение на интервалы) и выбор начального приближения к каждому корню. В простейшем случае можно протабулировать функцию с заданным шагом.

Если в двух соседних узлах функция будет иметь разные знаки, то между этими узлами лежит нечетное число корней уравнения (по меньшей мере один).

Метод дихотомии (бисекций)

Иначе называется методом половинного деления. Пусть задан начальный интервал [x0, x1], на котором f(x0)f(x1) ≤ 0 (т.е. внутри имеется не менее чем один корень). Найдем x2 = ½ (x0 + x1) и вычислим f(x2). Если f(x0)f(x2) ≤ 0, используем для дальнейшего деления отрезок [x0, x2], если > 0 – используем для дальнейшего деления отрезок [x1, x2], и продолжаем деление пополам.

Итерации продолжаются, пока длина отрезка не станет меньше 2ξ – заданной точности. Тогда середина последнего отрезка даст значение корня с требуемой точностью. В качестве иного критерия можно взять
| f(x)| ≤ ξy.

Скорость сходимости метода невелика, однако он прост и надежен. Метод неприменим к корням четной кратности. Если на отрезке несколько корней, то заранее неизвестно, к какому из них сойдется процесс.

Если на заданном интервале предполагается несколько корней, то существует возможность последовательно исключать найденные корни из рассмотрения. Для этого воспользуемся вспомогательной функцией , где – только что найденный корень. Для функций f(x) и g(x) совпадают все корни, за исключением (в этой точке полюс функции g(x)). Для достижения требуемой точности рекомендуется грубо приблизиться к корню по функции g(x), а затем уточнить его, используя f(x).

Идея метода проиллюстрирована рисунком. Задается интервал [ x0, x1], на котором f(x0)f(x1) ≤ 0, между точками x0 и x1 строится хорда, стягивающая f(x). Очередное приближение берется в точке x2, где хорда пересекает ось абсцисс. В качестве нового интервала для продолжения итерационного процесса выбирается тот, на концах которого функция имеет разные знаки. Условия выхода из итерационного цикла: или | f(x)| ≤ ξy.

Для вывода итерационной формулы процесса найдем точку пересечения хорды (описываемой уравнением прямой) с осью абсцисс: ax2 + b = 0, где ; b = f(x0)ax0.

Отсюда легко выразить .

Метод хорд в большинстве случаев работает быстрее, чем метод дихотомии. Недостатки метода те же, что и в предыдущем случае.

Метод Ньютона (касательных.

Пусть x0 – начальное приближение к корню, а f(x) имеет непрерывную производную. Следующее приближение к корню найдем в точке x1, где касательная к функции f(x), проведенная из точки (x0, f0), пересекает ось абсцисс. Затем точно так же обрабатываем точку(x1, f1), организуя итерационный процесс. Выход из итерационного процесса по условию .

Уравнение касательной, проведенной из точки (x0, f0): y(x) = f / (x0)(x-x0) + f(x0) дает для y ( x 1) = 0 следующее выражение:

, (1)

которое и используется для организации итерационного процесса. Итерации сходятся, только если всюду выполняется условие ; в противном случае сходимость будет не при любом начальном приближении, а только в некоторой окрестности корня. Итерации будут сходиться к корню с той стороны, с которой .

Метод обладает самой высокой скоростью сходимости: погрешность очередного приближения примерно равна квадрату погрешности предыдущего приближения. Метод можно использовать для уточнения корней в области комплексных чисел, что необходимо при решении многих прикладных задач, например при численном моделировании электромагнитных колебательных и волновых процессов с учетом временной и пространственной диссипации энергии.

Недостатком метода можно указать необходимость знать явный вид первой и второй производных, так как их численный расчет приведет к уменьшению скорости сходимости метода. Иногда, ради упрощения расчетов, используют т.н. модифицированный метод Ньютона, в котором значениеf / (x) вычисляется только в точке x0, при этом число итераций увеличивается, но расчеты на каждой итерации упрощаются.

В отличие от метода Ньютона, можно заменить производную первой разделенной разностью, найденной по двум последним итерациям, т.е. заменить касательную секущей. При этом первый шаг итерационного процесса запишется так:

.

Для начала итерационного процесса необходимо задать x0 и x1, которые не обязательно ограничивают интервал, на котором функция должна менять знак; это могут быть любые две точки на кривой. Выход из итерационного процесса по условию .

Сходимость может быть немонотонной даже вблизи корня. При этом вблизи корня может происходить потеря точности, т.н. «разболтка решения», особенно значительная в случае кратных корней. От разболтки страхуются приемом Гарвика: выбирают некоторое ξx и ведут итерации до выполнения условия . Затем продолжают расчет, пока убывает. Первое же возрастание может свидетельствовать о начале разболтки, а значит, расчет следует прекратить, а последнюю итерацию не использовать.

Метод простых итераций.

Суть метода простых итераций в принципе совпадает с методом, изложенным для решения систем линейных алгебраических уравнений. Для нелинейного уравнения метод основан на переходе от уравнения

К эквивалентному уравнению x = φ(x). Этот переход можно осуществить разными способами, в зависимости от вида f(x). Например, можно положить

где b = const, при этом корни исходного уравнения (2) не изменятся.

Если известно начальное приближение к корню x0, то новое приближение x1 = φx(0), т.е. общая схема итерационного процесса:

Наиболее простой критерий окончания процесса .

Критерий сходимости метода простых итераций: если вблизи корня |φ / (x)| / (x)| = 0. При этом, исходя из (3), b = –1/f / (x), и итерационная формула (4) переходит в

,

т.е. в формулу метода Ньютона (1). Таким образом, метод Ньютона является частным случаем метода простых итераций, обеспечивающим самую высокую скорость сходимости из всех возможных вариантов выбора функции φ(x).

Решение нелинейного уравнения с одним неизвестным в различных средах программного обеспечения

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«Волжский государственный инженерно-педагогический университет»

Кафедра математики и информатики

Решение нелинейного уравнения с одним неизвестным в различных средах программного обеспечения

Методическая разработка по выполнению курсовой работы по информатике для студентов специальности 080801.65 – Прикладная информатика (в менеджменте)

1.Постановка задачи 4

2.Методы отделения корней 5

2.1.Графический метод 5

2.2Аналитический метод 6

3.Методы уточнения корней 8

3.1.Метод половинного деления 8

3.2.Метод последовательных приближений 10

3.3.Метод Ньютона 12

4.Анализ результатов 16

Варианты заданий 18

Список рекомендуемой литературы 19

В настоящее время появилось значительное число различных программных продуктов (MathCad, Mathlab и т. д.), с помощью которых, задавая только входные данные и не вникая в сущность алгоритмов, можно решить значительное число задач. Безусловно, умение пользоваться этими программными продуктами существенно сокращает время и ресурсы по решению ряда важных задач.

Зачастую решение некоторых задач сводится к решению достаточно сложных нелинейных уравнений, которые могут представлять собой самостоятельную задачу или являться составной частью более сложных задач. Корни таких уравнений сравнительно редко удается найти точными методами. Кроме того, в некоторых случаях коэффициенты уравнения, полученные в процессе эксперимента или как результаты предварительных расчетов, известны лишь приблизительно. Значит, сама задача о точном определении корней уравнения теряет смысл, и важное значение приобретают способы приближенного нахождения корней уравнения и оценки степени их точности. При традиционном подходе к изучению численных методов в основном в математических курсах ориентируются на стандартные ручные расчеты. С развитием материальной и программной базы современных компьютеров при принятии тех или иных решений более реалистичным представляется подход численных расчетов при использовании новейших информационных технологий.

В представленной работе на примере решения нелинейного уравнения с одной неизвестной f(x)=x++-2.5 реализуются 3 технологии:

● алгоритмическая на базе программной среды Pascal;

● с использованием табличного процессора Excel;

● на основе пакета формульных преобразований MathCAD.

Делается сравнительный анализ полученных результатов.

Пусть дано уравнение f (x)=0, (1) где функция f (x) непрерывна на некотором множестве X.

Совокупность значений переменной х, при которых уравнение (1) обращается в тождество, называется решением этого уравнения, а каждое отдельное значение – корнем уравнения. В зависимости от вида функции f(x) уравнения подразделяются на алгебраические и трансцендентные.

В первых для получения значения функции по аргументу необходимо выполнить арифметические операции и возведение в степень с рациональным показателем (иррациональные функции, где используется операция извлечения корня, также относят к классу алгебраических функций).

Алгебраическое уравнение можно привести к виду:

++…++=0, (2) где числа , i = — коэффициенты уравнения, которые в общем случае являются комплексными.

Таким образом, корни уравнения могут быть как вещественными, так и комплексными. Будем считать числа вещественными.

Функцию называют трансцендентной, если она содержит логарифмические, показательные, тригонометрические и другие функции. И если в записи уравнения (1) содержится трансцендентная функция, то уравнение называют трансцендентным.

Точные аналитические значения корней уравнения (1) можно найти лишь в простейших случаях (ах+в=0; а+вх+с=0; соs(x)=а и т. д.). Кроме того, коэффициенты некоторых уравнений есть приближенные числа, поэтому нельзя говорить о нахождении точных корней.

Будем считать, что уравнение (1) имеет только действительные корни. Тогда нахождение корней с заданной точностью необходимо проводить в два этапа:

    отделение корней, т. е. нахождение достаточно малых промежутков, в которых содержится только один корень уравнения; уточнение каждого из отдельных корней, т. е. определение их с заданной точностью.

Рассмотрим технологию выполнения курсовой работы на примере определения корней уравнений на интервале .

Методы отделения (локализации) корней Графический метод

Он основан на построении графика функции y=f(x). Тогда искомым отрезком [а;в], содержащим корень уравнения (1), будет отрезок оси абсцисс, содержащий точку пересечения графика с этой осью. Иногда выгоднее представить исходную функцию в виде разности двух более простых функций f(x)=g(x)-g1(x) и строить два графика = g(x) и = g1(x), точка пересечения которых и является корнем уравнения (1), а отрезок на оси абсцисс с корнем внутри и будет являться интервалом изоляции. Этот метод хорошо работает в случае, если исходное уравнение не имеет близких корней и дает тем точнее результат, чем мельче берется сетка по оси ОХ.

Первый способ f(x) = x++-2.5

Второй способ g(x) = x+; g1(x) = 2.5 —

Искомый корень уравнения находится на отрезке [0,7;0,8]

Аналитический метод основан на следующем положении: если непрерывная и дифференцируемая на отрезке [a;b] функция f(x) принимает значения разных знаков на его концах (т. е. f(a)∙f(b) 0 . Тогда функцию ц(x) можно представить как ц(x) = x — л∙F(x). Затем, варьируя параметр л, добиваемся условия сходимости: |ц’(x)|

Решение нелинейных уравнений

Уравнения, в которых содержатся неизвестные функции, произведенные в степень больше единицы, называются нелинейными.
Например, y=ax+b – линейное уравнение, х^3 – 0,2x^2 + 0,5x + 1,5 = 0 – нелинейное (в общем виде записывается как F(x)=0).

Системой нелинейных уравнений считается одновременное решение нескольких нелинейных уравнений с одной или несколькими переменными.

Существует множество методов решения нелинейных уравнений и систем нелинейных уравнений, которые принято относить в 3 группы: численные, графические и аналитические. Аналитические методы позволяют определить точные значения решения уравнений. Графические методы наименее точны, но позволяют в сложных уравнениях определить наиболее приближенные значения, с которых в дальнейшем можно начинать находить более точные решения уравнений. Численное решение нелинейных уравнений предполагает прохождения двух этапов: отделение корня и его уточнение до определенно заданной точности.
Отделение корней осуществляется различными способами: графически, при помощи различных специализированных компьютерных программ и др.

Рассмотрим несколько методов уточнения корней с определенно заданной точностью.

Методы численного решения нелинейных уравнений

Метод половинного деления.

Суть метода половинного деления заключается в делении интервала [a,b] пополам (с=(a+b)/2) и отбрасывании той части интервала, в которой отсутствует корень, т.е. условие F(a)xF(b)

Рис.1. Использование метода половинного деления при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0, то начала отрезка a переносится в x (a=x), иначе, конец отрезка b переносится в точку x (b=x). Полученный отрезок делим опять пополам и т.д. Весь произведенный расчет отражен ниже в таблице.

Рис.2. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

При использовании метода хорд, задается отрезок [a,b], в котором есть только один корень с установленной точностью e. Через точки в отрезке a и b, которые имеют координаты (x(F(a);y(F(b)), проводится линия (хорда). Далее определяются точки пересечения этой линии с осью абсцисс (точка z).
Если F(a)xF(z)

Рис.3. Использование метода хорд при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0;

Определим вторую производную F’’(x) = 6x-0,4.

F’’(-1)=-6,4 0 соблюдается, поэтому для определения корня уравнения воспользуемся формулой:


, где x0=b, F(a)=F(-1)=-0,2

Весь произведенный расчет отражен ниже в таблице.

Рис.4. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Метод касательных (Ньютона)

Данный метод основывается на построении касательных к графику, которые проводятся на одном из концов интервала [a,b]. В точке пересечения с осью X (z1) строится новая касательная. Данная процедура продолжается до тех пор, пока полученное значение не будет сравним с нужным параметром точности e (F(zi)

Рис.5. Использование метода касательных (Ньютона) при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0 выполняется, поэтому расчеты производим по формуле:

Весь произведенный расчет отражен ниже в таблице.

Рис.6. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:


источники:

http://pandia.ru/text/81/131/75468.php

http://reshit.ru/Reshenie-nelineynyh-uravneniy