Необходимые в уравнениях с параметрами

Методика обучения решению квадратных уравнений с параметром

Разделы: Математика

Решение задач с параметром вызывает затруднения у учащихся, так как практических заданий по данной теме в школьных учебниках недостаточно.

Цели разработки темы

  • формирование устойчивого интереса к познавательному процессу при изучении математики и оценка возможности овладения предметом с точки зрения дальнейшей перспективы;
  • обеспечение прочного и сознательного усвоения учащимися системой математических знаний, умений и навыков;
  • формирование качества мышления, характерного для математической деятельности и необходимые человеку для жизни в современном обществе;
  • выявление и развитие математических способностей учащихся.
  • Задачи разработки темы:
  • показать универсальные алгоритмы для решения квадратных уравнений с параметром;
  • научить приемам решения различного класса задач с параметром, способствовать овладению технических и интеллектуальных математических умений на уровне свободного их использования;
  • использование новых современных педагогических технологий обучения.

В математике параметр – это постоянная величина, выраженная буквой, сохраняющая свое постоянное значение лишь в условиях данной задачи (“параметр” с греческого “parametron” – отмеривающий)..

Если ставится задача для каждого значения параметра а из некоторого числового множества А решить уравнение F(х;а)= 0 относительно х, то это уравнение называют уравнением с переменной х и параметром а, а множество А – областью изменения параметра. Под областью определения уравнения F(х;а)=0 с параметром а понимаются такие системы значений х и а, при которых F(х;а) имеет смысл. Все значения параметра а, при которых F(х;а) не имеет смысла, включать в число значений параметра, при которых уравнение не имеет решений. Под областью изменения параметра (если не сделано специальных оговорок) берется множество всех действительных чисел, а задачу решения уравнения с параметром формулировать следующим образом: решить уравнение F(х;а)=0 (с переменной х и параметром а) – это значит на множестве действительных чисел решить семейство уравнений, получающихся из данного уравнения при всех действительных значениях параметра или установить, что решений нет.

В связи с тем, что выписать каждое уравнение из бесконечного семейства уравнений невозможно, но каждое уравнение семейства должно быть решено, следовательно, необходимо по некоторому целесообразному признаку разбить множество всех значений параметра на подмножества и решить затем заданное уравнение на каждом из этих подмножеств. Для разбиения множества значений параметра на подмножества, удобно пользоваться теми значениями параметра, при которых или при переходе через которые происходят качественные изменения уравнения. Такие значения параметра называются контрольными.

1. КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРОМ

Задачи с параметрами можно разделить на два больших класса:

  • задачи, в которых необходимо при всех значениях параметра из некоторого множества решить уравнение;
  • задачи, в которых требуется найти все значения параметра, при каждом из которых решение уравнения удовлетворяют некоторым условиям.

В зависимости от типа задачи изменяется и вид ответа. В первом случае в решении и ответе должны быть рассмотрены все возможные значения параметров. Если хотя бы одно значение какого-либо параметра не исследовано, решение задачи не может быть признано полным.

Во втором случае в ответе перечисляются только те значения параметра, при которых выполнены условия задачи, а при решении подобных задач обычно решать заданное уравнение нет необходимости.

Уравнение вида Ах 2 + Вх + С= 0 , где А, В, С — выражения, зависимые от параметра, х – переменная — называется квадратным уравнением с параметром.

Уравнение вида ах 2 +вх+с=0, где , а, в, с – действительные числа, называют квадратным уравнением. D=в 2 -4ас называется дискриминантом квадратного уравнения (“дискриминант” по – латыни “различитель”).

В зависимости от значения дискриминанта возможны три случая:

D > 0. Данное квадратное уравнение имеет два действительных корня

D=0. Данное уравнение имеет корень двойной кратности

D 2 +2кх+с=0 со вторым коэффициентом (в=2к) четным, для нахождения корней удобно пользоваться формулами: , где D1= =к 2 -ас.

№ 1.1. Определите все значения параметра а при которых уравнение ах 2 +2(а+1)х+а+3=0 имеет два неравных корня.

Если а=0, то имеем 0·х 2 +2(0+1)х+0+3=0, 2х+3=0 — данное уравнение является линейным, х=-1,5 – единственный корень. Итак, а=0 не удовлетворяет условию задачи.

Если а?0, то уравнение имеет два различных корня, когда дискриминант >0.

Найдем=(а+1) 2 -а(а+3)=-а+1,-а+1>0, а 2 -4(а+1)х+4а+1=0 имеет один корень.

Если а=0, то имеем 2·0·х 2 -4(0+1)х+4·0+1=0, -4х+1=0 — данное уравнение является линейным, х=0,25 – единственный корень. Итак, а=0 удовлетворяет условию задачи.

Если а 0, то исходное уравнение является квадратным и имеет единственный корень при =0. Найдем =(2(a+1)) 2 -2a(4а+1) = -4a 2 +6a+4,4a 2 +6a+4=0, а1=2, а2=-0,5.

С учетом а=0, запишем ответ: а=-0,5, а=0, а=2.

№ 1.3. При каких значениях параметра а квадратное уравнение (5а-1)х 2 -(5а+2)х+3а-2=0 не имеет корней?

Если 5а-1=0,а=0,2, то имеем (5*0,2-1)х 2 -(5*0,2+2)х+3*0,2-2=0,

-3х-1,4=0 — данное уравнение является линейным, х = — единственный корень.

Итак, а=0,2 не удовлетворяет условию задачи.

Если а 0,2, то квадратное уравнение не имеет корней, если дискриминант квадратного уравнения D 2 -4(5a-1)(3а-2)=-35a 2 +72a-4,-35a 2 +72a-4 2 -72a+4>0, а1=2, а2=, (а-2)(а-)>0. С учетом а 0,2 ответ:

№ 1.4. Определите все значения параметра а при которых уравнение (2а-1)х 2 +ах+2а-3=0 имеет не более одного решения.

Если 2а-1=0,а=0,5, то имеем (2·0,5-1)х 2 +0,5·х+2·0,5-3=0, 0,5х-2=0 — данное уравнение является линейным, х=4 — единственный корень.

Итак, а=0,5 удовлетворяет условию задачи.

Если а 0,5, то квадратное уравнение имеет не более одного решения, если дискриминант квадратного уравнения D0.

Найдем D=а 2 -4(2a-1)(2а-3)=-15a 2 +32a-12, -15a 2 +32a-120,

15a 2 -32a+12?0, а1=, а2=, (а-)(а-) 0.

С учетом а 0,5, имеем .

С учетом а=0,5, запишем ответ: .

2. НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ С ПАРАМЕТРОМ.

Квадратное уравнение ах 2 +вх+с=0, где а 0 называется неполным, если хотя бы один из коэффициентов в или с равен 0.

Общая схема решения неполных квадратных уравнений с параметрами.

ах 2 =0, где а 0, в=0, с=0. Если а 0 ,то уравнение примет вид: х 2 =0, х=0.

Следовательно, уравнение имеет два совпадающих корня, равных нулю.

Если а=0, то х — любое действительное число.

ах 2 +с=0, где а0, в=0, с0. Если а0,то уравнение примет вид: следовательно, уравнение имеет корни, то они равны по абсолютной величине, но противоположны по знаку; 2 +вх=0, где а0, в0, с=0. Если а0,то уравнение примет вид: х(а+в)=0,или Если а=0, то вх=0, х=0.

№ 2.1. При каких значениях параметра а оба корня уравнения 2х 2 +(3а 2 -|а|)х-а 2 -3а=0 равны нулю?

Оба корня квадратного уравнения равны нулю, когда

№ 2.2. При каких значениях параметра а, корни уравнения 2 х 2 -(5а-3)х+1=0 равны по модулю, но противоположны по знаку?

Корни квадратного уравнения равны по модулю, но противоположны по знаку, когда 5а-3=0,а=0,6, но с учетом того, что имеем уравнение 2х 2 +1=0, х 2 =-0,5, которое корней не имеет. Ответ: .

№ 2.3. При каких значениях параметра а один из двух различных корней уравнения 3х 2 +х+2а-3=0 равен нулю?

Параметр должен удовлетворять условию: 2а-3=0, а=1,5. Ответ: а=1,5.

№ 2.4. При каких значениях параметра а корни уравнения 3х 2 +(а 2 -4а)х+а-1=0 равны по модулю, но противоположны по знаку?

Корни квадратного уравнения равны по модулю, но противоположны по знаку, когда:

Ответ: а=0.

№ 2.5. Решить относительно х неполное квадратное уравнение х 2 -2а+1=а.

х 2 =а+2а-1; х 2 =3а-1.

Если 3а-1=0, а= ,то уравнение имеет два совпадающих корня, равных нулю.

Если 3а-1 0. а>, то уравнение имеет два корня .

Ответ: при арешений нет; при а= х=0; при

3. ИССЛЕДОВАНИЕ И РЕШЕНИЕ КВАДРАТНЫХ УРАВНЕНИЙ С ПАРАМЕТРОМ.

№ 3.1. Исследовать и решить уравнение с параметром х 2 –2(а-1)х+2а+1=0.

Найдем дискриминант: D=(а — 1) 2 -2а – 1= а 2 -2а+1-2а-1= а 2 — 4а.

D > 0, а 2 — 4а > 0, а (а -4) > 0, а 4, то уравнение имеет два действительных корня ;

D =0, а (а-4)=0, а=0, то х=а-1, х=0-1, х=-1, а=4,то х=а-1, х=4-1, х=3;

D 2 +2(а+1)х+а–2= 0.

1) При а-1=0, а=1 имеем линейное уравнение 4х-1=0, х=– единственное решение.

2) При а 1 уравнение является квадратным, найдем дискриминант:

D1 = (а+1) 2 -(а–1)(2а-2)=а 2 +2а+1-а 2 +2а+а-2=5а-1.

D1>0. 5а-1>0, а>, а 1, то уравнение имеет два корня .

D1=0. 5а-1=0, а=, то уравнение имеет два равных корня .

х 2 +2х-8–ах+4а=0; х 2 +(2-а)х+4а-8=0. Уравнение является квадратным.

Найдем дискриминант: D=(2-а) 2 -4(4а-8)=4-4а+а 2 -16а+32= а 2 -20а+36.

D>0. а 2 20а+36>0, (а-18)(а -2)>0, а 18, то уравнение имеет два действительных корня .

D=0. (а-18)(а-2)=0, а=2, то ; а=18, то ;

D 2 равен 1, то уравнение принимает вид х 2 +px+q, где p и q — некоторые числа называется приведенным квадратным уравнением.

Теорема Виета: Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

ах 2 +вх+с=0, где х1 и х2 – корни квадратного уравнения, то

Справедливо утверждение, обратное теореме Виета.

Теорема: Если числа p и q таковы, что их сумма равна -p, а произведение равно q. то эти числа являются корнями уравнения х 2 +px+q=0.

№ 4.1. При каком значении параметра а сумма обратных величин действительных корней уравнения 2х 2 -2ах+а 2 -2=0 равна ?

Пусть х1 и х2 – корни квадратного уравнения, по условию .

По теореме Виета: Используя соотношения между корнями и условие задачи, имеем:

Найдем дискриминант квадратного уравнения:

Имеем: Ответ: при

№ 4.2. В уравнении (а 2 -5а+3)х 2 +(3а-1)х+2=0 определите а так, чтобы один из корней был вдвое больше другого.

Пусть х1 и х2 – корни квадратного уравнения, по условию х1 =2 х2. Заметим, что кратное сравнение выполняется только для положительных чисел.

По теореме Виета и условию задачи имеем систему:

Составим и решим уравнение:

Можно вычислить дискриминант данного уравнения, а затем проверить, удовлетворяет ли данное значение параметра а условию, что дискриминант неотрицателен, а так же, что корни положительны. Однако в данной задаче значительно проще сделать проверку, подставив это значение а в исходное уравнение.

При Корни отрицательны и кратно не сравниваются, поэтому задача решений не имеет. Ответ: решений нет.

№ 4.3. Найти все значения параметра а, при которых квадратное уравнение (а+2)х 2 –ах-а=0 имеет два корня, расположенных на числовой прямой симметрично относительно точки х=1.

При а+2=0, а=-2, то 2х+2=0, х=-1 – единственное решение, следовательно данное значение а не удовлетворяет условию задачи.

При а-2. Пусть х1 и х2 – корни квадратного уравнения, по условию х1 =1-у, х2.=1+у, где у – некоторое действительное число.

По теореме Виета имеем:

Решим первое уравнение системы: 2(а+2)=а, а=-4.

Найдем дискриминант данного квадратного уравнения:

Данное значение а=-4 удовлетворяет полученным значениям. Ответ: а=-4.

Ответ: при а = — 4.

  1. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА.
  2. Азаров А.И., Барвенов С.А., Федосенко В.С. Методы решения задач с параметрами. Минск; “Аверсэв”. 2005.
  3. Амелькин В. В., Рабцевич В. Л. Задачи с параметрами. Минск; “Асар”. 1996.
  4. Данкова И. Н., Бондаренко Т. Е., Емелина Л. Л., Плетнева О. К.Предпрофильная подготовка учащихся 9 классов по математике. Москва; “5 за знания”.2006.
  5. Литвиненко В. Н., Мордкович А. Г.. Практикум по элементарной математике. Москва; “Просвещение”.1991.
  6. Родионов Е. М. Решение задач с параметрами. Москва; “Русь – 90”. 1995.
  7. Студенецкая В. Н., Сагателова Л. С. Математика 8 – 9классы: сборник элективных курсов. Волгоград; “Учитель”. 2006.
  8. Шарыгин И. Ф. Решение задач. Москва; “Просвещение”. 1994.
  9. Шахмейстер А. Х. Уравнения и неравенства с параметрами. Санкт-Петербург; “Петроглиф”. 2006.

Квадратные уравнения с параметрами

Ханты-Мансийский автономный округ — Югра

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №4»

Индекс 628681 Российская Федерация, Тюменская область, Ханты-Мансийский автономный округ – Югра, г. Мегион, /1

Cайт: http//www. megionschool4.ru

Департамент финансов администрации города Мегиона

( МБОУ «Средняя общеобразовательная школа №4»

р/с в РКЦ г. Нижневартовска,

Квадратные уравнения с параметрами

(Методическая разработка для учащихся 9-11 классов)

учитель математики высшей квалификационной категории,

заместитель директора по УВР

1.Теоремы о расположении корней квадратного трехчлена

§2.Применение теоремы Виета

3.Примеры решения задач для подготовки к ГИА и ЕГЭ по математике

Список рекомендованной литературы

В методической разработке систематизированы теоремы о расположении корней квадратного трехчлена (необходимые и достаточные условия расположения корней квадратичной функции относительно заданных точек); особое внимание уделено использованию свойств квадратичной функции; приведено применение теоремы Виета к решению квадратных уравнений с параметрами; все идеи проиллюстрированы примерами, рассмотрены основные методы решения квадратных уравнений с параметрами, подробные методические указания по решению квадратных уравнений с параметрами.

Методическая разработка предназначена для учащихся 9-11 классов, студентов педагогических вузов, а также для учителей. Пособие поможет в подготовке к вступительному экзамену в вуз, сдаче ЕГЭ по математике и к ГИА в новой форме.

Разработка посвящена одному из наиболее трудных разделов элементарной математики: задачам с параметрами. В последние годы в тестах ЕГЭ и ГИА по математике, и на вступительных экзаменах в высшие учебные заведения широкое распространение получили задачи, содержащие параметры. Решение задач с параметрами носит учебно-исследовательский характер, они играют важную роль в формировании логического мышления, развитии творческих способностей учащихся, в формировании научно-исследовательских умений. Задачи с параметрами представляют собой как бы небольшую модель будущей научной работы учащегося. В задачах с параметрами содержится множество приёмов, необходимых не только для математического развития личности, но и и в любом другом научном исследовании. Поэтому решение задач с параметрами и в частности решение квадратных уравнений с параметрами является пропедевтикой научно-исследовательской работы учащихся. На ЕГЭ по математике (часто задания С5), ГИА (задания части 2) и на вступительных экзаменах встречаются, в основном, два типа задач с параметрами. Первый: «Для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй: «Найти все значения параметра, при каждом из которых для данного уравнения или неравенства выполняются некоторые условия». Соответственно и ответы в задачах этих двух типов различаются по существу. В ответе к задаче первого типа перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответе к задаче второго типа указываются все значения параметра, при которых выполняются условия, указанные в задаче.

Как известно, решению задач с параметрами в школе уделяется очень мало внимания. Поэтому решение задач с параметрами всегда вызывает большие трудности у учащихся; трудно рассчитывать на то, что учащиеся, подготовка которых не содержала «параметрическую терапию», смогут в жесткой атмосфере конкурсного экзамена успешно справиться с подобными задачами, следовательно, учащиеся должны специально готовиться к «встрече с параметрами». Многие учащиеся воспринимают параметр как «обычное» число. Действительно, в некоторых задачах параметр можно считать постоянной величиной, но это постоянная величина принимает неизвестные значения. Поэтому необходимо рассматривать задачу при всех возможных значениях этой постоянной величины. В других задачах бывает удобно искусственно объявить параметром одну из неизвестных.

Задачи с параметрами обладают диагностической и прогностической ценностью – с помощью задач с параметрами можно проверить знание основных разделов школьной математики, уровень математического и логического мышления, первоначальные навыки научно-исследовательской деятельности, а главное, перспективные возможности успешного овладения курсом математики данного вуза.

Анализ вариантов ЕГЭ по математике и вступительных экзаменов в различные вузы показывает, что большинство предлагаемых задач с параметрами связано с расположением корней квадратного трехчлена. Будучи основной в школьном курсе математики, квадратичная функция формирует обширный класс задач с параметрами, разнообразных по форме и содержанию, но объединенных общей идеей – в основе их решения лежат свойства квадратичной функции. При решении таких задач рекомендуется работать с тремя типами моделей:

1. вербальная модель – словесное описание задачи;

2. геометрическая модель – эскиз графика квадратичной функции;

3. аналитическая модель – система неравенств, при помощи которой описывается геометрическая модель.

Методическое пособие содержит теоремы о расположении корней квадратного трехчлена (необходимые и достаточные условия расположения корней квадратичной функции относительно заданных точек), применение теоремы Виета к решению квадратных уравнений с параметрами. Приведены подробные решения 15 задач с методическими рекомендациями. Назначение данного пособия – помочь выпускнику и учителю математики в подготовке к сдаче ЕГЭ и ГИА по математике, и вступительного экзамена в вуз в виде теста или в традиционной форме.

1. Теоремы о расположении корней квадратного трехчлена

Теоремы о расположении корней квадратного трехчлена не входят непосредственно ни в школьную программу по математике, ни в программу для поступающих в вузы, поэтому выпускник или абитуриент, пользуясь ими, вообще говоря, должен уметь их доказывать. В то же время, обоснование теорем о расположении корней квадратного трехчлена строится на элементарных фактах школьной математики. В данном пособии приведены доказательства нескольких теорем.

Введем следующие обозначения: х1, х2 – корни квадратного трехчлена f(x), х1 ≤ х2, D – дискриминант f(x), xb – абсцисса вершины параболы, являющейся графиком f(x). Решение большинства задач с параметром, в которых необходимо провести исследование квадратного трехчлена, сводится к определению необходимых и достаточных условий реализации одного или нескольких из следующих случаев:

Теорема 1.Для того чтобы оба корня квадратного трехчлена f(x) = ax2 + bx + c (a ≠ 0) были больше некоторого числа n,необходимо и достаточно выполнение следующих условий:

Геометрическая интерпретация. Для того чтобы парабола (см. рис. 1, 2) – график функции f(x) = ax2 + bx + c – пересекала ось ОХ в точках (х1; 0) и (х2; 0), лежащих правее точки (n; 0), необходимо и достаточно выполнения трех условий:

1. вершина параболы – либо лежит в нижней полуплоскости, либо в верхней полуплоскости, либо на оси ОХ ( условие D≥0);

2. ось симметрии параболы – прямая хb = — — лежит правее прямой х = n ( условие xb>n );

3. парабола пересекается с прямой х = n в точке, лежащей в верхней полуплоскости при a>0 и в точке, лежащей в нижней полуплоскости при а 0).

Рис. 1

Доказательство теоремы 1.

Достаточность. Так как D ≥ 0,то по теореме о дискриминанте, получим, что квадратный трехчлен имеет два корня х1 и х2; пусть х1≤х2. Так как вершина параболы расположена между корнями трехчлена, т. е.х1≤хв≤х2, и, по условию, n 0 и уже доказанное неравенство х2 > n:

f(n) = a∙(n – x1)∙(n – x2).

Сравнение знаков левой и правой частей этого неравенства приводит нас к выводу, что выполнено неравенство n – х1 n.

Необходимость. Так как трехчлен имеет два корня, то по теореме о дискриминанте, D≥0. Так как х1> n и х2> n, то х1+х2 > 2n, поэтому

хв = > = n.

По теореме о разложении на линейные множители, с учетом известных по условию знаков, получим запись f(n) = a∙(n – x1)∙(n – x2), из которой следует, что f(n) > 0. Тем самым теорема доказана полностью.

Теорема 2. Для того чтобы оба корня квадратного трехчлена f(х) были меньше некоторого числа m, необходимо и достаточно выполнение следующих условий:

Рис. 3

Рис. 4

Теорема 3.Для того чтобы оба корня квадратного трехчлена f(x) принадлежали заданному промежутку (n; m), необходимо и достаточно выполнение следующих условий:

Рис. 5

Рис. 6

Теорема 4. Только меньший корень квадратного трехчлена f(x) принадлежит заданному промежутку (n; m) тогда и только тогда, когда одновременно выполняются условия:

Рис. 7

Теорема 5. Только больший корень квадратного трехчлена f(x) принадлежит заданному промежутку (n; m) тогда и только тогда, когда одновременно выполняются условия:

Рис. 8

Теорема 6. Для того чтобы оба корня квадратного трехчлена f(x) лежат вне заданного промежутка (n; m), необходимо и достаточно выполнение следующих условий:

Рис. 9

Теорема 7.Для того чтобы один из корней квадратного трехчлена f(x) был больше заданного числа n, а другой меньше, необходимо и достаточно выполнение условия (или для того чтобы некоторое число n лежало между корнями квадратного трехчлена, необходимо и достаточно выполнение условия):

Рис. 10

Теорема 8. Квадратный трехчлен f(x) имеет один корень внутри интервала (n;m), а другой расположен вне этого интервала тогда и только тогда, когда выполняется условие f(n)∙f(m) 6 дискриминант оказывается отрицательным, следовательно, квадратное уравнение не имеет корней.

Ответ: при уравнение не имеет корней; при а = 1 уравнение имеет один корень х = -1; при уравнение имеет два корня ; при а = 2 уравнение имеет единственный корень ; при а = 6 уравнение имеет единственный корень .

Пример 2.При каком значении параметра а уравнение (а — 2)х2 + (4 – 2а)х + 3 = 0 имеет единственный корень?

Решение. Если а = 2, то уравнение превращается в линейное∙х + 3 = 0; которое не имеет корней.

Если а ≠ 2, то уравнение – квадратное и имеет единственный корень при нулевом дискриминанте D.

.

D = 0 при а1 = 2 и a2 = 5. Значение а = 2 исключается, так как противоречит условию, что исходное уравнение – квадратное.

4.При каких значениях параметра а квадратное уравнение

(а — 1)х2 + (2а + 3)х + а + 2 = 0 имеет корни одного знака?

Решение. Так как по условию задачи рассмотренное уравнение – квадратное, значит, а ≠ 1. очевидно, условие задачи предполагает также существование корней квадратного уравнения, что означает неотрицателность дискриминанта

Так как по условию корни должны быть одинаковых знаков, то х1∙х2 > 0, т. е. .Решением последнего неравенства является .С учетом условий D ≥ 0 и а ≠ 1 получим .

Ответ: .

Пример 3.Найти все значения а, для которых уравнение х2 – 2(а – 1)х + (2а + 1) = 0 имеет два положительных корня.

Решение. Из теоремы Виета для того чтобы оба корня х1 и х2 данного уравнения были положительными, необходимо и достаточно, чтобы дискриминант квадратного трехчлена х2 – 2(а – 1)х + (2а + 1) был неотрицательным, а произведение х1∙х2 и сумма х1 + х2 были положительными. Получаем, что все а, удовлетворяющие системе

И только они, являются решениями поставленной задачи. Э та система равносильна системе

Решением которой, а следовательно, и самой задачи являются все числа из промежутка [4; + ∞).

Пример 4.При каких значениях параметра а уравнение (а — 2)х2 — 2(а + 3)х + 4а = 0

имеет два корня, один из которых меньше 2, а другой больше 3?

Решение. По теореме 6, для того чтобы оба корня данного квадратного трехчлена лежали вне заданного промежутка, необходимо и достаточно выполнение условий Получим систему неравенств:

Ответ: .

Пример 5.При каких значениях а уравнение (а — 1)∙х2 = (а + 1)∙ха имеет единственное решение, удовлетворяющее условию 0 х1. Искомые значения параметра а удобнее найти, решив систему неравенств:

у

Рис.18 0 х1 2 3 х2 5 х

Ответ: (1;3)

Пример 8.При каких значениях параметра а один корень уравнения ах4 – (а — 3)х2 + 3а = 0 меньше –2, три остальных больше –1?

Решение. Пусть х2 = t. Исходя из требований, предъявляемых к корням исходного уравнения, достаточно решить следующую задачу: при каких значениях а один корень уравнения at2 – (a — 3)t + 3a = 0 больше 4, другой меньше 1, но не меньше 0? Очевидно а ¹ 0, D > 0. Представим уравнение в виде:

.

Его корни будут удовлетворять указанным выше условиям, если f(1) 0. Поскольку f(0) = 3, то достаточно решить систему

Решением уравнения является . Ответ: .

Пример 9.Найдите все значения параметра а, при которых все корни уравнения

(2 — а)х2 – 3ах + 2а = 0 больше .

Решение. Введем обозначения f(x) = (2 — a)x2 – 3ax + 2a, ;

Если а = 2, то . для случая а ≠ 2, чтобы сформулировать нужные условия, представим себе график трехчлена f(x), оба корня которого больше .

(к рис.19) (к рис.20)

(к рис.21) (к рис.22)

Объединяя эти условия, получим систему:

Ответ: .

Пример 10. Найти все значения а, при которых уравнение cos8x + sin8x = a имеет корни, и решить это уравнение.

Решение. Используя равенства cos8x + sin8x = (cos4x – sin4x)2 + 2cos4x×sin4x = cos22x + и полагая cos 4x = t, преобразуем исходное уравнение к виду t2 + 14t + 17 – 32a = 0. Задача сводится к нахождению тех значений а при которых последнее уравнение имеет действительные корни такие, что хотя один из них удовлетворяет условию . Имеем дискриминант уравнения:

и неравенство D1 ³ 0 выполняется при а ³ -1. находим корни t1 и t2 уравнения :

; .

Заметим, что t1 1.

Первый случай реализуется неравенством D = -4a + 5

Уравнения с параметрами.

Исследование и решение уравнений с параметрами считается не самым простым разделом школьной математики. Однако, параметр, как понятие, часто воспринимается школьниками гораздо более сложным, чем есть в действительности. Здесь в первом пункте представлены очень простые вводные примеры использования параметров в уравнениях. Те, для кого это понятие не составляет большой трудности, могут сразу перейти к решению задач, которые представлены ниже.

Что такое уравнение с параметром?

Допустим нам нужно решить уравнение 2х + 5 = 2 − x.
Решение: 2x + x = 2 − 5; 3x = −3; x = −3/3 = −1.

Теперь нужно решить уравнение 2x + 5 = 3 − x.
Решение: 2x + x = 3 − 5; 3x = −2; x = −2/3

Затем нужно решить уравнение 2x + 5 = 0,5 − x.
Решение: 2x + x = 0,5 − 5; 3x = −4,5; x = −4,5/3 = −1,5.

А потом может потребоваться решить уравнение 2x + 5 = 10,7 − x или уравнение 2x + 5 = −0,19 − x.
Понятно, что уравнения похожи, а потому их решение будет сопровождаться теми же действиями, что выше. Возникает естественный вопрос — сколько можно делать одно и то же?

Уменьшим себе трудозатраты. Заметим, что все эти уравнения отличаются только одним числом в правой части. Обозначим это число символом a .
Получим уравнение 2х + 5 = aх,
где aпеременная величина, вместо которой можно подставить нужное числовое значение и получить нужное уравнение. Эта переменная и называется параметром.

Решим это уравнение так же, как и все предыдущие.
Решение: 2х + 5 = ax; 2x + x = a − 5; 3x = a − 5; x = (a − 5)/3.

Теперь для того, чтобы найти ответы для двух последних примеров, мы можем не повторять полностью всё решение каждого уравнения, а просто подставить в полученную формулу для х числовое значение параметра а:
x = (10,7 − 5)/3 = 5,7/3 = 1,9;
x = (−0,19 − 5)/3 = −5,19/3 = −1,73.

Таким образом, под термином «уравнение с параметром», фактически, скрывается целое семейство «почти одинаковых уравнений» , которые отличаются друг от друга только одним числом (одним слагаемым или одним коэффициентом) и одинаково решаются. Параметр — это число, которое меняется от уравнения к уравнению.
Полученную формулу для корня уравнения мы можем запрограммировать на компьютере. Достаточно будет только ввести значение параметра a, чтобы получить решение любого такого уравнения.

Рассмотрим еще один пример.

Замечаем, что они похожи друг на друга и отличаются только первым коэффициентом. Обозначим его, например, символом k.
Решим уравнение + 5 = 2 − x с параметром k.

С помощью этой формулы вычислим все ответы для приведенных уравнений.
x = −3/(2 + 1) = −1
x = −3/(3 + 1) = −0,75
x = −3/(−4 + 1) = 1
x = −3/(17 + 1) = −1/6

Можем ли мы теперь запрограммировать эту формулу и сказать, что с её помощью можно решить любое аналогичное уравнение?
Запрограммировать можем. Компьютер справится как с очень большими значениями коэффициента, так и с очень маленькими.
Например, если введём k = 945739721, то для уравнения заданного вида будет получен корень примерно равный −0,0000000031721201195353831188, если k = 0,0000004, то получим корень ≈ −2,9999988000004799998080000768.
Но, если мы введем в программу, казалось бы, более простое значение k = −1, то компьютер зависнет.
Почему?

Посмотрим внимательнее на формулу x = −3/(−1 + 1) = −3/0. Деление на ноль.
Посмотрим на соответствующее уравнение −1·х + 5 = 2 − x.
Преобразуем его −х + x = 2 − 5.
Оказывается, оно равносильно уравнению 0 = −3 (. ) и не может иметь корней.
Таким образом, из общего подхода к решению «почти одинаковых уравнений» могут существовать исключения, о которых нужно позаботиться отдельно. Т.е. провести предварительное исследование всего семейства уравнений. Именно этому и учатся на уроках математики с помощью так называемых задач с параметрами.

Графические способы решения уравнений

Сначала вспомним, что представляет собой графический способ решения обычного уравнения (без параметра).
Пусть дано уравнение вида f(x) = g(x) . Построим графики функций y = f(x) и y = g(x) и найдём точки пересечения этих графиков. Абсциссы точек пересечения и есть корни уравнения.

Для быстрого построения эскизов графиков повторите еще раз графики элементарных функций, которые изучаются в школьном курсе математики, и правила преобразования графиков функций.

Рассмотрим примеры.

1. Решить уравнение
2х + 5 = 2 − x

Ответ: x = −1.

2. Решить уравнение
2х 2 + 4х − 1 = 2х + 3

3. Решить уравнение
log2х = −0,5х + 4

Ответ: x = 2.

Первые два из приведенных уравнений вы можете решить и аналитически, так как это обычные линейное и квадратное уравнения. Второе уравнение содержит функции разных классов — степенную (здесь линейную) и трансцендентную (здесь логарифмическую). Для таких случаев выбор способов решения у школьников очень ограничен. Фактически, единственным доступным способом является именно графическое решение.

Внимание: Для корней, найденных графическим способом, обязательна проверка! Вы уверены, что на третьем рисунке пересечение именно в точке х = 4 , а не в точке 3,9 или 4,1? А если на реальном экзамене у вас нет возможности построить график достаточно точно? На чертеже «от руки» разброс может быть еще больше. Поэтому алгоритм действий должен быть следующим:

  1. Предварительный вывод: х ≈ 4.
  2. Проверка: log24 = −0,5·4 + 4; 2 = −2 + 4; 2 ≡ 2.
  3. Окончательный вывод х = 4.

Чтобы графически решать уравнения с параметрами надо строить не отдельные графики, а их семейства.

Решение уравнений с параметрами с помощью графиков.

Задача 1.

Найти все значения параметра q при которых уравнение |x + 1| − |x − 3| − x = q 2 − 8q + 13 имеет ровно 2 корня.

При каждом значении параметра q можно вычислить значение выражения q 2 − 8q + 13 . Результат обозначим переменной а.
Т.е. примем q 2 − 8q + 13 = a и решим уравнение с параметром |x + 1| − |x − 3| − x = a

Строим график функции y = |x + 1| − |x − 3| − x , расположенной в левой части уравнения.
Для этого разобьём числовую ось на отрезки точками, в которых каждый из встречающихся модулей принимает нулевое значение.


Для каждого из этих участков раскроем модули с учётом знаков.
Вспомним: по определению |x| = x, если х ≥ 0, и |x| = −x, если х Чтобы проверить знаки модулей на участке достаточно подставить любое промежуточное значение x из этого отрезка, например, −2, 0 и 4.

Таким образом на участке I, где −∞ имеем −(x + 1) + (x − 3) − x = − x − 4.
Следовательно, должны построить график функции y = − x − 4 .
Это линейная функция. Её график прямая линия, которую можно построить по двум точкам, например, x = 0, y = −4 и у = 0, x = −4. Cтроим всю прямую бледной линией, а затем выделяем часть графика, относящуюся только к рассматриваемому участку.

Аналогично, разбираемся с оставшимися двумя участками.

На участке II, где −1 имеем (x + 1) + (x − 3) − x = x − 2
и должны построить соответствующую часть графика функции y = x − 2 .

На участке III, где 3 , имеем (x + 1) − (x − 3) − x = − x + 4
и должны построить соответствующую часть графика функции y = − x + 4 .

Последовательное построение итогового графика показано ниже. (Чтобы увеличить рисунок, нужно щелкнуть по нему левой кнопкой мыши.)

Замечание: если вы освоили тему Преобразование графиков функций, то с этой частью задачи сможете справиться быстрее, чем показано в примере.

Итак, построение графика функции, расположенной в левой части уравнения, мы завершили. Посмотрим, что находится в правой части.

График функции y = a представляет собой прямую линию, параллельную оси абсцисс (Ox), и пересекающую ось ординат (Oy) в точке а. Так как а — параметр, который может принимать разные значения, то нужно построить целое семейство таких параллельных линий, пересекающих ось ординат на разной высоте. Очевидно, что все графики семейства построить мы не сможем, поскольку их бесконечное множество. Изобразим для примера несколько штук в районе уже построенного графика функции. Ниже прямые семейства y = a показаны красным цветом.

Из рисунка видно, что количество точек пересечения каждой из красных прямых с ранее построенным (зелёным) графиком зависит от высоты, на которой расположена эта прямая, т.е. от параметра а. Прямые, расположенные ниже y = −3 , пересекают график в одной точке, а значит эти уравнения имеют только одно решение. Прямые, проходящие на уровне −3 имеют по три точки пересечения, значит соответствующие уравнения будут иметь по три решения. Прямые, расположенные выше точки y = 1 , снова имеют только по одной точке пересечения.
Ровно две точки пересечения с зелёным графиком будут иметь только прямые y = 1 и y = −3 . Соответствующие уравнения будут иметь ровно два корня, что и требовалось определить в задании.

Однако мы нашли значения введённого нами параметра а, при котором заданное уравнение имеет 2 корня, а вопрос задачи состоял в том, чтобы найти все значения параметра q. Для этого придётся решить следующую совокупность уравнений:

Это обычные квадратные уравнения, которые решаются через дискриминант или по теореме Виета.

Таким образом, окончательный ответ: <2;4;6>.

Задача 2.

Найти все значения параметра a, при которых уравнение (2 − x)x(x − 4) = a имеет ровно 3 корня.

Рассмотрим функцию y = (2 − x)x(x − 4) . Видно, что если раскрыть скобки, то старший член будет х 3 . Т.е. графиком функции должна быть кубическая парабола, причем на при x, стремящемcя к +∞, y → −∞, а при x, стремящемся к −∞, y → +∞.
Поскольку уравнение (2 − x)x(x − 4) = 0 имеет три корня 2, 0 и 4, то график функции будет пересекать ось абсцисс трижды.
Понятно, что при упомянутых условиях график непрерывной функции должен иметь участок с «волной». Строим от руки эскиз графика.

Правая часть уравнения y = a такая же, как в предыдущей задаче. Поэтому дальнейшие построения не требуют комментариев. Смотрите рисунки. Чтобы увеличить, используйте щелчок мышью.

Из рисунков видно, что прямые, отделяющие линии с тремя точками пересечения от других случаев, проходят через экстремумы кубической функции. Поэтому определяем значения ymax и ymin через производную. (Исследовать функцию полностью не нужно, так как примерное положение точек экстремума мы видим на эскизе графика.) Обратите внимание на то, что при вычислении значений функции используются точные значения x и формулы сокращенного умножения. Приближенные значения в промежуточных вычислениях не используют.

Ответ:

Задача для самостоятельного решения

Задача 3.

При каком наибольшем отрицательном значении параметра а уравнение имеет один корень?

Ответ: -1,625

Задача реального экзамена ЗНО-2013 (http://www.osvita.ua/).

Переход на главную страницу сайта «Математичка».

Есть вопросы? пожелания? замечания?
Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.


источники:

http://pandia.ru/text/80/021/8612.php

http://mathematichka.ru/school/parametry/param_equation.html