Необратимой является реакция уравнение которой

Классификация реакций

Существует несколько классификаций реакций, протекающих в неорганической и органической химии.

По характеру процесса
  • Соединения

Так называют химические реакции, где из нескольких простых или сложных веществ получается одно сложное вещество. Примеры:

В результате реакции разложения сложное вещество распадается на несколько сложных или простых веществ. Примеры:

В ходе реакций замещения атом или группа атомов в молекуле замещаются на другой атом или группу атомов. Примеры:

К реакциям обмена относятся те, которые протекают без изменения степеней окисления и выражаются в обмене компонентов между веществами. Часто обмен происходит анионами/катионами:

AgF + NaCl = AgCl↓ + NaF

Окислительно-восстановительные реакции (ОВР)

Это те химические реакции, в процессе которых происходит изменение степеней окисления химических элементов, входящих в состав исходных веществ. ОВР подразделяются на:

    Межмолекулярные — атомы окислителя и восстановителя входят в состав разных молекул. Примеры:

Внутримолекулярные — атомы окислителя и восстановителя в составе одного сложного вещества. Примеры:

Диспропорционирование — один и тот же атом является и окислителем, и восстановителем

Замечу, что окислителем и восстановителем могут являться только исходные вещества (а не продукты!) Окислитель всегда понижает свою СО, принимая электроны в процессе восстановления. Восстановитель всегда повышает свою СО, отдавая электроны в процессе окисления.

От обилия информации можно запутаться. Я рекомендую сформулировать четко: «Окислитель — понижает СО, восстановитель — повышает СО». Запомнив эту информацию таким образом, вы не будете путаться.

ОВР уравнивают методом электронного баланса, с которым мы подробно познакомимся в разделе «Решения задач».

Обратимые и необратимые реакции

Обратимые реакции — такие химические реакции, которые протекают одновременно в двух противоположных направлениях: прямом и обратном. При записи реакции в таких случаях вместо знака «=» ставят знак обратимости «⇆».

Классическим примером обратимой реакции является синтез аммиака и реакция этерификации (из органической химии):

Необратимые реакции протекают только в одном направлении, до полного расходования одного из исходных веществ. Главное отличие их от обратимых реакций в том, что образовавшиеся продукты реакции не взаимодействуют между собой с образованием исходных веществ.

Иногда сложно бывает отличить обратимую реакцию от необратимой, однако я дам несколько советов, которые советую взять на вооружение. В результате необратимых реакций:

  • Образуются малодиссоциирующие вещества (например — вода, однако есть исключения — реакция этерификации)
  • Реакция сопровождается выделение большого количества тепла
  • В ходе реакции образуется газ или выпадает осадок

Примеры необратимых реакций:

NaOH + HCl = NaCl + H2O (образуется вода)

2Na + 2H2O = 2NaOH + H2 (сопровождается выделением большого количества тепла)

Реакции и агрегатное состояние фаз

Фазой в химии называют часть объема равновесной системы, однородную во всех своих точках по химическому составу и физическим свойствам и отделенную от других частей того же объема поверхностью раздела. Фаза бывает жидкой, твердой и газообразной.

Все реакции можно разделить на гетеро- и гомогенные. Гетерогенные реакции (греч. heterogenes — разнородный) — реакции, протекающие на границе раздела фаз, в неоднородной среде. Скорость таких реакций зависит от площади соприкосновения реагирующих веществ.

К гетерогенным реакциям относятся следующие реакции (примеры): жидкость + газ, газ + твердое вещество, твердое вещество + жидкость. Примером такой реакции может послужить взаимодействие твердого цинка и раствора соляной кислоты:

Гомогенные реакции (греч. homogenes — однородный) — реакции, протекающие между веществами, находящимися в одной фазе.

К гомогенным реакциям относятся (примеры): жидкость + жидкость, газ + газ. Примером такой реакции может служить взаимодействие между растворами уксусной кислоты и едкого натра.

Реакции и их тепловой эффект

Все реакции можно разделить на те, в ходе которых тепло поглощается, или, наоборот, тепло выделяется. Представьте пробирку, охлаждающуюся или нагревающуюся в вашей руке — это и есть тот самый тепловой эффект. Иногда тепла выделяется так много, что реакции сопровождаются воспламенением или взрывом (натрий с водой).

Экзотермические реакции (греч. exo — вне) — химические реакции, сопровождающиеся потерей энергии системой и выделением тепла (той самой энергии) во внешнюю среду. При написании химических реакций в конце экзотермических ставят «+ Q» (Q — тепло), иногда бывает указано точное количество выделяющегося тепла. Например:

2Mg + O2 = 2MgO + Q

NaOH + HCl = NaCl + H2O + 56 кДж

К экзотермическим реакциям часто относятся реакции горения, соединения.

Исключением является взаимодействие азота и кислорода, при котором тепло поглощается:

Как уже было отмечено выше, если тепло выделяется во внешнюю среду, значит, система реагирующих веществ потеряло это тепло. Поэтому не должно казаться противоречием, что внутренняя энергия веществ в результате экзотермической реакции уменьшается.

Энтальпией называют (обозначение Н), количество термодинамической (тепловой) энергии, содержащееся в веществе. Иногда с целью «запутывания» в реакции вместо явного +Q при экзотермической реакции могут написать ΔH 0, так как внутренняя энергия веществ увеличивается. Например:

CaCO3 = CaO + CO2↑ ; ΔH > 0 (значит реакция эндотермическая, так как внутренняя энергия увеличивается)

Замечу, что не все реакции разложения являются эндотермическими. Широко известная реакция разложения дихромата аммония («вулканчик») является примером экзотермического разложения, при котором тепло выделяется.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Необратимые и обратимые реакции

Все химические реакции делятся на два типа: обратимые и необратимые.

Необратимыми называются реакции, которые протекают только в одном направлении, т. е. продукты этих реакций не взаимодействуют друг с другом с образованием исходных веществ.

Необратимая реакция заканчивается тогда, когда полностью расходуется хотя бы одно из исходных веществ. Необратимыми являются реакции горения; многие реакции термического разложения сложных веществ; большинство реакций, в результате которых образуются осадки или выделяются газообразные вещества, и др. Например:

Обратимыми называются реакции, которые одновременно протекают в прямом и в обратом направлениях:

В уравнениях обратимых реакций используется знак обратимости .

Примером обратимой реакции является синтез йодоводорода из водорода и йода:

Через некоторое время после начала химической реакции в газовой смеси можно обнаружить не только конечный продукт реакции НI, но и исходные вещества —H2 и I2. Как бы долго ни продолжалась реакция, в реакционной смеси при 350 o С всегда будет содержаться приблизительно 80% HI,10% Н2 и 10% I2. Если в качестве исходного вещества взять НI и нагреть его до той же температуры, то можно обнаружить, что через некоторое время соотношение между количествами всех трех веществ будет таким же. Таким образом, при образовании йодоводорода из водорода и йода одновременно осуществляются прямая и обратная реакции.

Если в качестве исходных веществ взяты водород и йод в концентрациях [H2] и [I2], то скорость прямой реакции в начальный момент времени была равна: vпр = kпр[H2] ∙ [I2]. Скорость обратной реакции vобр = kобр[HI] 2 в начальный момент времени равна нулю, так как йодоводород в реакционной смеси отсутствует ([HI] = 0). Постепенно скорость прямой реакции уменьшается, так как водород и йод вступают в реакцию и их концентрации понижаются. При этом скорость обратной реакции увеличивается, потому что концентрация образующегося йодоводорода постепенно возрастает. Когда скорости прямой и обратной реакций станут одинаковыми, наступает химическое равновесие. В состоянии равновесия за определенный промежуток времени образуется столько же молекул НI, сколько их распадается на Н2 и I2.

Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием.

Химическое равновесие является динамическим равновесием. В равновесном состоянии продолжают протекать и прямая, и обратная реакции, но так как скорости их равны, концентрации всех веществ в реакционной системе не изменяются. Эти концентрации называются равновесными концентрациями.

Смещение химического равновесия

Принцип Ле-Шателье

Химическое равновесие является подвижным. При изменении внешних условий скорости прямой и обратной реакций могут стать неодинаковыми, что обусловливает смещение (сдвиг) равновесия.

Если в результате внешнего воздействия скорость прямой реакции становится больше скорости обратной реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если скорость обратной реакции становится больше скорости прямой реакции, то говорят о смещении равновесия влево (в сторону обратной реакции). Результатом смещения равновесия является переход системы в новое равновесное состояние с другим соотношением концентраций реагирующих веществ.

Направление смещения равновесия определяется принципом, который был сформулирован французским ученым Ле-Шателье (1884 г):

Если на равновесную систему оказывается внешнее воздействие, то равновесие смещается в сторону той реакции (прямой или обратной), которая противодействует этому воздействию.

Важнейшими внешними факторами, которые могут приводить к смещению химического равновесия, являются:

а) концентрации реагирующих веществ;

б) температура;

в) давление.

Влияние концентрации реагирующих веществ

Если в равновесную систему вводится какое-либо из участвующих в реакции веществ, то равновесие смещается в сторону той реакции, при протекании которой данное вещество расходуется. Если из равновесной системы выводится какое-либо вещество, то равновесие смещается в сторону той реакции, при протекании которой данное вещество образуется.

Например, рассмотрим, какие вещества следует вводить и какие вещества выводить из равновесной системы для смещения обратимой реакции синтеза аммиака вправо:

Для смещения равновесия вправо (в сторону прямой реакции образования аммиака) необходимо в равновесную смесь вводить азот и водород (т. е. увеличивать их концентрации) и выводить из равновесной смеси аммиак (т. е. уменьшать его концентрацию).

Влияние температуры

Прямая и обратная реакции имеют противоположные тепловые эффекты: если прямая реакция экзотермическая, то обратная реакция эндотермическая (и наоборот). При нагревании системы (т. е. повышении ее температуры) равновесие смещается в сторону эндотермической реакции; при охлаждении (понижении температуры) равновесие смещается в сторону экзотермической реакции.

Например, реакция синтеза аммиака является экзотермической: N2(г) + 3H2(г) → 2NH3(г) + 92кДж, а реакция разложения аммиака (обратная реакция) является эндотермической: 2NH3(г)→ N2(г) + 3H2(г) — 92кДж. Поэтому повышение температуры смещает равновесие в сторону обратной реакции разложения аммиака.

Влияние давления

Давление влияет на равновесие реакций, в которых принимают участие газообразные вещества. Если внешнее давление повышается, то равновесие смещается в сторону той реакции, при протекании которой число молекул газа уменьшается. И наоборот, равновесие смещается в сторону образования большего числа газообразных молекул при понижении внешнего давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на равновесие в данной системе.

Например, для увеличения выхода аммиака (смещение вправо) необходимо повышать давление в системе обратимой реакции , так как при протекании прямой реакции число газообразных молекул уменьшается (из четырех молекул газов азота и водорода образуются две молекулы газа аммиака).

Необратимые реакции

Содержание:

Необратимые реакции – это реакции, продукты которых при данных условиях взаимодействовать друг с другом не могут. Например, реакции горения или реакции, протекающие со взрывом — чаще всего, необратимые.

На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.

Необратимые реакции

Необратимые реакцииреакции, при которых взятые вещества нацело превращаются в продукты реакции, не реагирующие между собой при данных условиях, например, разложение взрывчатых веществ, горение углеводородов, образование малодиссоциирующих соединений, выпадение осадка.

Обратимые и необратимые реакции

По направлению реакции бывают обратимыми и необратимыми. Сначала рассмотрим необратимые реакции. Само название их говорит о том, что это такие реакции, которые в данных условиях проходят до конца и не изменяют своего направления при изменении температуры и давления. Какие же реакции мы можем считать необратимыми? В результате необратимых реакций исходные вещества практически полностью превращаются в конечные продукты. Важнейшим условием необратимости химических реакций является выделение одного из продуктов в виде осадка, образование газообразного продукта реакции либо мало-диссоциированного продукта реакции (воды), а также выделение большого количества тепла.

Необратимыми называют химические реакции, протекающие в прямом направлении.

Теперь рассмотрим обратимые реакции. Большая часть химических реакций обратима, т. е. протекает одновременно во взаимно противоположных направлениях.

Обратимыми называют химические реакции, протекающие при данной температуре одновременно как в сторону образования продуктов (прямая)» так и в сторону их распада (обратная). При записи уравнений таких реакций знак равенства заменяют противоположно направленными стрелками. Простейшим примером обратимой реакции является синтез аммиака:

Реакцию, протекающую слева направо, называют прямой, а справа налево — обратной.

В обратимых процессах скорость прямой реакции вначале имеет максимальное значение, а затем уменьшается вследствие уменьшения концентрации реагентов, расходуемых на образование продуктов реакции. Напротив, обратная реакция в начальный момент имеет минимальную скорость, которая увеличивается по мере увеличения концентрации продуктов реакции. Наконец, наступает такой момент, когда скорости прямой и обратной реакций становятся равными. Такое состояние обратимого процесса называется химическим равновесием.

Химическое равновесие — это такое состояние системы, при котором скорости прямой и обратной реакций становятся равными.

Химическое равновесие является динамичным (подвижным), так как при наступлении равновесия химическая реакция не прекращается.

В состоянии равновесия за единицу времени образуется такое же количество молекул продуктов реакции, какое превращается в исходные вещества. При постоянных температуре и давлении равновесие обратимой реакции может сохраняться неопределенно долгое время.

По направлению реакции бывают обратимыми и необратимыми. Необратимыми называют химические реакции, протекающие в прямом направлении. Обратимыми называют химические реакции, протекающие при данной температуре одновременно как в сторону образования продуктов (прямая) так и в сторону их распада (обратная). При записи уравнении таких реакций знак равенства заменяют противоположно направленными стрелками. Химическое равновесие — это такое состояние системы, при котором скорости прямой и обратной реакций становятся равными.

Условия смещения химического равновесия

Многие химические продукты получают в результате обратимых химических реакций, поэтому важно знать, при каких условиях в состоянии равновесия выход продукта увеличивается. Если при изменении условий в состоянии равновесия выход продукта увеличивается, то считают, что равновесие сместилось вправо, если уменьшается — то влево. Многочисленные исследования доказали, что смещение химического равновесия подчиняется правилу, названному принципом Ле Шателье-Брауна:

При изменении одного из условий, при котором система находится в равновесии — температуры, давлении или концентрации — равновесие смещается в направлении той реакции« которая противодействует этому изменению.

Рассмотрим применение принципа Ле Шателье-Брауна к различным типам воздействия.

Влияние изменения концентрации

В соответствии с принципом Ле Шате лье-Браун а при увеличении концентрации исходных веществ равновесие смещается в сторону образования продуктов реакции, т. е. вправо, потому что увеличение концентрации одного из реагирующих веществ приведет к увеличению скорости прямой реакции. Например, при введении дополнительного количества азота равновесие в реакции образования оксида азота (II) сместится вправо — в направлении образования продукта:

Влияние изменения давления

Давление смещает равновесие в системе в тех случаях, когда происходит изменение числа молей газообразных веществ. Увеличение давления смещает равновесие в сторону реакции, идущей с уменьшением числа молей газов. Уменьшение давления смещает равновесие в сторону реакции, идущей с увеличением числа молей газов. Например:

Данная реакция сопровождается уменьшением числа молей оксида углерода (IV). При повышении давления равновесие реакции смещается в направлении образования оксида углерода (IV) и, наоборот, понижение давления способствует смещению равновесия влево — в направлении образования исходных веществ. Необходимо отметить, что равновесие под влиянием изменения давления смещается лишь в том случае, когда в реакции участвуют газообразные вещества и реакция сопровождается изменением общего числа молекул. Если общее число молекул в процессе реакции не изменяется, то увеличение или уменьшение давления не влияет на равновесие этой реакции. Например, в реакции образования оксида азота

Изменение давления в системе не влияет на смещения равновесия. Таким образом, согласно принципу Ле Шателье-Брауна:

При повышении давления равновесие реакции смещается в направлении образования веществ, занимающих меньший объем, и, наоборот, понижение давления способствует процессу, сопровождающему увеличение объема.

Влияние изменения температуры

Рассмотрим на примере реакции горения оксида углерода (II):

Из уравнения реакции видим, что процесс образования углекислого газа является экзотермическим. При повышении температуры равновесие этой реакции смещается влево, в направлении образования исходных веществ. Наоборот, понижение температуры смещает равновесие вправо, в направлении образования продукта.

Таким образом, повышение температуры смещает химическое равновесие в сторону эндотермического, а понижение температуры — в направлении экзотермического процесса.

Принцип Ле Шателье можно применить к таким реакциям, в которых реагирующие вещества находятся в разных агрегатных состояниях. Например:

Реакция горения серы — процесс экзотермический. Повышение температуры будет смещать равновесие этой реакции в направлении эндотермического процесса — реакции разложения оксида серы (IV), а изменение давления не влияет на смещение равновесия.

Влияние катализаторов

Катализаторы одинаково ускоряют как прямую, так и обратную реакции, поэтому на смещение химического равновесия не влияют, а только способствуют более быстрому его установлению.

При увеличении концентрации одного из реагирующих веществ равновесие сдвинется в сторону образования продуктов реакции. Если общее число молекул в процессе реакции не изменяется, то изменение давления не влияет на смешение равновесия. Увеличение давления смещает равновесие в сторону реакции, идущей с уменьшением числа молей газов. При повышении температуры равновесие смещается в сторону эндотермической, а при понижении — в сторону экзотермической реакции. Уменьшение давления смешает равновесие в сторону реакции, идущей с увеличением числа молей молекул. Катализаторы одинаково ускоряют как прямую, так обратную реакции, поэтому на смешение химического равновесия не влияют, а только способствуют более быстрому его установлению.

Услуги по химии:

Лекции по химии:

Лекции по неорганической химии:

Лекции по органической химии:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://al-himik.ru/neobratimye-i-obratimye-reakcii/

http://natalibrilenova.ru/neobratimyie-reaktsii/