Неоднородная система линейных уравнений примеры

Неоднородная система линейных уравнений примеры

Пусть задана неоднородная система линейных алгебраических уравнений размерности m × n .

Матрица называется расширенной матрицей системы, если наряду с коэффициентами при неизвестных, она содержит столбец свободных членов. Следовательно, размерность равна m × (n+1) .

Исследование любой системы линейных алгебраических уравнений начинается с преобразования ее расширенной матрицы методом Гаусса , который основан на следующих элементарных преобразованиях:

– перестановка строк матрицы;

– умножение строк матрицы на действительное отличное от руля число;

– поэлементное сложение строк матрицы;

– вычеркивание нулевой строки;

– транспонирование матрицы (в этом случае преобразования производятся по столбцам).

Элементарные преобразования приводят первоначальную систему к системе, ей эквивалентной. Системы называются эквивалентными, если они имеют одно и то же множество решений.

Рангом матрицы называется наивысший порядок отличных от нуля ее миноров. Элементарные преобразования ранга матрицы не меняют.

На вопрос о наличии решений у неоднородной системы линейных уравнений отвечает следующая теорема.

Теорема 1.3 (теорема Кронекера-Капелли). Неоднородная система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу ее главной матрицы, то есть

Обозначим количество строк, оставшихся в матрице после метода Гаусса, через r (соответственно, в системе остается r уравнений). Эти строки матрицы называются базисными.

Если r = n , то система имеет единственное решение (является совместной определенной), ее матрица элементарными преобразованиями приводится к треугольному виду. Такую систему можно решить также методом Крамера и с помощью обратной матрицы .

Если r n (количество переменных в системе больше количеств а уравнений), матрица элементарными преобразованиями приводится к ступенчатому виду. Такая система имеет множество решений и является совместной неопределенной. В данном случае для нахождения решений системы необходимо выполнить ряд операций.

1. Оставить в левых частях уравнений системы r неизвестных (базисные переменные), остальные n r неизвестных перенести в правые части (свободные переменные). После разделения переменных на базисные и свободные система принимает вид:

2. Из коэффициентов при базисных переменных составить минор (базисный минор), который должен быть отличен от нуля.

3. Если базисный минор системы (1.10) равен нулю, то одну из базисных переменных следует заменить на свободную; полученный базисный минор снова проверить на отличие от нуля.

4. Применяя формулы (1.6) метода Крамера, считая правые части уравнений их свободными членами, найти выражение базисных переменных через свободные в общем виде. Полученный при этом упорядоченный набор переменных системы является ее общим решением.

5. Придавая свободным переменным в (1.10) произвольные значения, вычислить соответствующие значения базисных переменных. Получаемый при этом упорядоченный набор значений всех переменных называется частным решением системы, соответствующим данным значениям свободных переменных. Система имеет бесконечное множество частных решений.

6. Получить базисное решение системы – частное решение, получаемое при нулевых значениях свободных переменных.

Заметим, что количество базисных наборов переменных системы (1.10) равно числу сочетаний из n элементов по r элементов Cn r . Так как каждому базисному набору переменных соответствует свое базисное решение, следовательно, количество базисных решений у системы также равно Cn r .

Пусть строки матрицы обозначены соответственно l 1 ; l 2 ;…; ln . Строка l называется линейной комбинацией строк l 1 ; l 2 ;…; ln матрицы, если она равна сумме произведений этих строк на произвольные действительные числа, то есть , .

Однородная система уравнений всегда совместна, так как имеет хотя бы одно – нулевое (тривиальное) решение. Для того чтобы однородная система n линейных уравнений с n переменными имела ненулевые решения, необходимо и достаточно, чтобы ее главный определитель был равен нулю. Это означает, что ранг r ее главной матрицы меньше числа n неизвестных ( r n ) . В этом случае исследование однородной системы уравнений на общее и частные решения проводится аналогично исследованию неоднородной системы. Решения однородной системы уравнений обладают важным свойством: если известны два различных решения однородной системы линейных алгебраических уравнений, то их линейная комбинация также является решением этой системы. Нетрудно убедиться в справедливости следующей теоремы.

Теорема 1.4. Общее решение неоднородной системы уравнений представляет собой сумму общего решения соответствующей однородной системы и некоторого частного решения неоднородной системы уравнений

Пример 1.7. Исследовать заданную систему уравнений и найти одно частное решение:

Решение. Выпишем расширенную матрицу системы и применим к ней элементарные преобразования:

Так как r ( A ) =2 и , то по теореме 1.3 (Кронекера-Капелли) заданная система линейных алгебраических уравнений совместна. Количество переменных n =2 , т.е. r n , значит, система является неопределённой. Количество базисных наборов переменных системы равно . Следовательно, базисными могут быть 6 комплектов переменных: < x 1 ; x 2 >, < x 1 ; x 3 >, < x 1 ; x 4 >, < x 2 ; x 3 >, < x 2 ; x 4 >, < x 3 ; x 4 > . Рассмотрим один из них < x 1 ; x 2 > . Тогда систему, полученную в результате метода Гаусса, можно переписать в виде . Главный определитель . С помощью метода Крамера ищем общее решение системы.

По формулам (1.6) имеем

Данное выражение базисных переменных через свободные представляет собой общее решение системы:

При конкретных значениях свободных переменных из общего решения получаем частное решение системы. Например, частное решение соответствует значениям свободных переменных x 3 = x 4 = 17 . При x3=0 x4=0 получаем базисное решение системы

Структура общего решения системы уравнений

Однородная система линейных уравнений

всегда совместна, так как имеет тривиальное решение . Если ранг матрицы системы равен количеству неизвестных , то тривиальное решение единственное. Предположим, что . Тогда однородная система имеет бесконечно много решений. Заметим, что расширенная матрица однородной системы при элементарных преобразованиях строк приводится к упрощенному виду , т.е. . Поэтому из (5.11) получаем общее решение однородной системы уравнений :

Получим другую форму записи решений однородной системы, которая раскрывает структуру множества решений. Для этого подчеркнем следующие свойства.

Свойства решений однородной системы уравнений

1. Если столбцы — решения однородной системы уравнений, то любая их линейная комбинация также является решением однородной системы.

В самом деле, из равенств следует, что

т.е. линейная комбинация решений является решением однородной системы.

2. Если ранг матрицы однородной системы равен , то система имеет линейно независимых решений.

Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений , придавая свободным переменным следующие стандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные — равны нулю):

которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последних строках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен . Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).

Любая совокупность линейно независимых решений однородной системы называется фундаментальной системой (совокупностью) решений .

Заметим, что фундаментальная система решений определяется неоднозначно. Однородная система может иметь разные фундаментальные системы решений, состоящие из одного и того же количества линейно независимых решений.

Теорема 5.3 об общем решении однородной системы. Если — фундаментальная система решений однородной системы уравнений (5.4), то столбец

при любых значениях произвольных постоянных также является решением системы (5.4), и, наоборот, для каждого решения х этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.14).

Прямое утверждение теоремы следует из свойства 1 решений однородной системы. Докажем обратное утверждение о том, что любое решение можно представить в виде (5.14). Для этого составим матрицу , приписав к столбцам фундаментальной системы решений столбец

Найдем ранг этой матрицы. Так как первые столбцов линейно независимы, то . Так как каждый из столбцов матрицы является решением системы , то по первой формуле из (5.13) получаем

Следовательно, первая строка матрицы является линейной комбинацией последних строк этой матрицы.

По второй формуле из (5.13) получим, что вторая строка матрицы является линейной комбинацией последних строк этой матрицы, и т.д. По r-й формуле из (5.13) получим, что r-я строка матрицы является линейной комбинацией последних строк этой матрицы. Значит, первые строк матрицы можно вычеркнуть и при этом ранг матрицы не изменится. Следовательно, , так как после вычеркивания в матрице будет всего строк. Таким образом, . Значит, есть базисный минор матрицы , который расположен в первых ее столбцах, а столбец не входит в этот базисный минор. Тогда по теореме о базисном миноре найдутся такие числа , что

Итак, обратное утверждение доказано.

Алгоритм решения однородной системы уравнений

1-5. Выполнить первые 5 пунктов алгоритма Гаусса. При этом не требуется выяснять совместность системы, так как любая однородная система имеет решение (пункт 3 метода Гаусса следует пропустить). Получить формулы (5.11) общего решения, которые для однородной системы будут иметь вид (5.13).

Если ранг матрицы системы равен числу неизвестных , то система имеет единственное тривиальное решение и процесс решения заканчивается.

Если ранг матрицы системы меньше числа неизвестных , то система имеет бесконечно много решений. Структуру множества решений находим в следующих пунктах алгоритма.

6. Найти фундаментальную систему решений однородной системы. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все свободные переменные равны нулю, кроме одной, равной единице (см. свойство 2 решений однородной системы).

7. Записать общее решение однородной системы по формуле (5.14).

1. В пункте 6 алгоритма вместо стандартного набора значений свободных переменных можно использовать и другие наборы значений, лишь бы они обеспечивали линейную независимость получаемых частных решений однородной системы.

2. Матрица столбцы которой образуют фундаментальную систему решений однородной системы, называется фундаментальной. Используя фундаментальную матрицу, общее решение (5.14) однородной системы можно записать в виде

3. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) однородной системы можно представить в виде блочной матрицы

Тогда блочная матрица размеров является фундаментальной. В этом можно убедиться, используя стандартные наборы значений свободных переменных. Применение блочных матриц может служить вторым способом нахождения фундаментальной системы решений.

Пример 5.4. Найти фундаментальную систему решений и общее решение однородной системы

Решение. 1. Составляем расширенную матрицу системы

2-4. Используя элементарные преобразования над строками матрицы , приводим ее к ступенчатому, а затем и к упрощенному виду (см. решение примера 5.3):

Пункт 3 метода Гаусса пропускаем.

5. Переменные — базисные, а — свободные. Записываем формулу (5.13) общего решения однородной системы

6. Находим фундаментальную систему решений. Так как и , надо подобрать линейно независимых решения. Подставляем в систему стандартные наборы значений свободных переменных:

В результате получили фундаментальную систему решений

7. Записываем общее решение однородной системы по формуле (5.14):

Заметим, что фундаментальную систему решений можно получить, взяв иные наборы значений свободных переменных. Например, и . Тогда получим другую фундаментальную систему решений

Несмотря на различия, обе формулы задают одно и то же множество решений.

Структура общего решения неоднородной системы уравнений

Ранее была выведена формула (5.11) общего решения системы линейных уравнений. Получим другую форму записи, отражающую структуру множества решений.

Рассмотрим неоднородную систему и соответствующую ей однородную систему . Между решениями этих систем имеются связи, выражающиеся следующими свойствами.

Свойства решений неоднородной системы уравнений

1. Разность двух решений и неоднородной системы есть решение однородной системы.

Действительно, из равенств и следует, что .

2. Пусть — решение неоднородной системы. Тогда любое решение неоднородной системы можно представить в виде

В самом деле, для любого решения неоднородной системы разность по свойству 1 является решением однородной системы, т.е. — решение однородной системы.

Теорема 5.4 о структуре общего решения неоднородной системы.

Пусть — решение неоднородной системы, а — фундаментальная система решений соответствующей однородной системы уравнений. Тогда столбец

при любых значениях [i]произвольных постоянных является решением неоднородной системы, и, наоборот, для каждого решения этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.15).[/i]

Говорят, что общее решение неоднородной системы есть сумма частного решения неоднородной системы и общего решения соответствующей однородной системы.

Доказательство теоремы вытекает из свойств 1, 2 и теоремы 5.3.

Алгоритм решения неоднородной системы уравнений

1-5. Выполнить первые 5 пунктов метода Гаусса решения системы уравнений и получить формулу общего решения неоднородной системы вида (5.11).

6. Найти частное решение неоднородной системы, положив в (5.11) все свободные переменные равными нулю.

7. Записав формулы (5.13) общего решения соответствующей однородной системы, составить фундаментальную систему ее решений. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все переменные равны нулю, за исключением одной, равной единице.

8. Записать общее решение неоднородной системы по формуле (5.15).

1. Используя фундаментальную матрицу однородной системы , решение неоднородной системы можно представить в виде

2. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) неоднородной системы можно представить в виде блочной матрицы

Тогда блочная матрица оказывается фундаментальной (см. п.3 замечаний 5.3), а столбец является частным решением неоднородной системы (в этом можно убедиться, подставляя в (5.11) нулевой набор свободных переменных). Используя блочные матрицы, общее решение (5 15) неоднородной системы можно представить в виде

где — столбец произвольных постоянных. Полученную формулу можно считать вторым способом решения неоднородной системы.

Пример 5.5. Найти структуру (5.15) общего решения неоднородной системы

Решение. 1-5. Первые 5 пунктов метода Гаусса выполнены при решении примера 5.3, где получены формулы общего решения неоднородной системы:

Переменные — базисные, а — свободные.

6. Полагая , получаем частное решение неоднородной системы .

7. Находим фундаментальную систему решений однородной системы (см. пример 5.4):

8. Записываем по формуле (5.15) общее решение неоднородной системы

Искомая структура множества решений найдена.

Получим формулу общего решения вторым способом , используя п.2 замечаний 5.4. При решении примера 5.3 расширенная матрица системы была приведена к упрощенному виду. Разбиваем ее на блоки:

Записываем частное решение неоднородной системы

и составляем фундаментальную матрицу:

По формуле (5.16) получаем общее решение неоднородной системы, которое преобразуем к виду (5.15):

Примеры решения СЛАУ

Методы решения систем линейных уравнений широко используются в задачах математики, экономики, физики, химии и других науках. На практике, они позволяют не делать лишних действий, а записать систему уравнений в более компактной форме и сократить время выполнения задач. Поэтому, будущим специалистам очень важно понять основные методы решения и научиться выбирать оптимальный.

Перед изучением примеров решения задач советуем изучить теоретический материал по СЛАУ, прочитать все теоремы и методы решения. Список тем находится в правом меню.

Примеры по темам:

СЛАУ: основные понятия, виды

Задание. Проверить, является ли набор $<0,3>$ решением системы $\left\<\begin 3 x-2 y=-6 \\ 5 x+y=3 \end\right.$

Решение. Подставляем в каждое из уравнений системы $x=0$ и $y=3$ :

$$3 x-2 y=-6 \Rightarrow 3 \cdot 0-2 \cdot 3=-6 \Rightarrow-6=-6$$ $$5 x+y=3 \Rightarrow 5 \cdot 0+3=3 \Rightarrow 3=3$$

Так как в результате подстановки получили верные равенства, то делаем вывод, что заданный набор является решением указанной СЛАУ.

Ответ. Набор $<0,3>$ является решением системы $\left\<\begin 3 x-2 y=-6 \\ 5 x+y=3 \end\right.$

Задание. Систему $\left\<\begin x-y+z-4 t=0 \\ 5 x+y+t=-11 \end\right.$ записать в матричной форме и выписать все матрицы, которые ей соответствуют.

Решение. Заданную СЛАУ записываем в матричной форме $A \cdot X=B$ , где матрица системы:

$$A=\left(\begin 1 & -1 & 1 & -4 \\ 5 & 1 & 0 & 1 \end\right)$$

$$A=\left(\begin 1 & -1 & 1 & -4 \\ 5 & 1 & 0 & 1 \end\right)$$

вектор-столбец свободных коэффициентов:

то есть, запись СЛАУ в матричной форме:

$$\left(\begin 1 & -1 & 1 & -4 \\ 5 & 1 & 0 & 1 \end\right)\left(\begin x \\ y \\ z \\ t \end\right)=\left(\begin 0 \\ -11 \end\right)$$

Задание. Записать матрицу и расширенную матрицу системы $\left\<\begin 2 x_<1>+x_<2>-x_<3>=4 \\ x_<1>-x_<2>=5 \end\right.$

Решение. Матрица системы $A=\left(\begin 2 & 1 & -1 \\ 1 & -1 & 0 \end\right)$ , тогда расширенная матрица $\tilde=(A \mid B)=\left(\begin 2 & 1 & -1 & 4 \\ 1 & -1 & 0 & 5 \end\right)$

Критерий совместности системы

Задание. При каких значениях $\lambda$ система $\left\<\begin 2 x_<1>-x_<2>+x_<3>+x_<4>=1 \\ x_<1>+2 x_<2>-x_<3>+x_<4>=2 \\ x_<1>+7 x_<2>-4 x_<3>+2 x_<4>=\lambda \end\right.$ будет совместной?

Решение. Ранг матрицы равен количеству ненулевых строк после приведения этой матрицы к ступенчатому виду. Поэтому записываем расширенную матрицу системы $\tilde$ (слева от вертикальной черты находится матрица системы $A$ ):

и с помощью элементарных преобразований приводим ее к ступенчатому виду. Для этого вначале от второй строки отнимаем две вторых строки, а от третьей вторую, в результате получаем:

Третью строку складываем с первой:

и меняем первую и вторую строки матрицы местами

Квадратные СЛАУ. Матричный метод решения

Теоретический материал по теме — матричный метод решения.

Задание. Найти решение СЛАУ $\left\<\begin5 x_<1>+2 x_<2>=7 \\ 2 x_<1>+x_<2>=9\end\right.$ матричным методом.

Решение. Выпишем матрицу системы $\left\<\begin 5 x_<1>+2 x_<2>=7 \\ 2 x_<1>+x_<2>=9 \end\right.$ и матрицу правых частей $B=\left(\begin 7 \\ 9 \end\right)$ . Найдем обратную матрицу для матрицы системы. Для матрицы второго порядка обратную можно находить по следующему алгоритму: 1) матрица должна быть невырождена, то есть ее определитель не должен равняться нулю: $|A|=1$ ; 2) элементы, стоящие на главной диагонали меняем местами, а у элементов побочной диагонали меняем знак на противоположный и делим полученные элементы на определитель матрицы. Итак, получаем, что

$$X=\left(\begin x_ <1>\\ x_ <2>\end\right)=A^ <-1>B=\left(\begin 1 & -2 \\ -2 & 5 \end\right) \cdot\left(\begin 7 \\ 9 \end\right)=$$ $$=\left(\begin -11 \\ 31 \end\right) \Rightarrow\left(\begin x_ <1>\\ x_ <2>\end\right)=\left(\begin -11 \\ 31 \end\right)$$

Две матрицы одного размера равны, если равны их соответствующие элементы, то есть в итоге имеем, что $x_<1>=-11$, $x_<2>=31$

Ответ. $x_<1>=-11$, $x_<2>=31$

Задание. Решить с помощью обратной матрицы систему $\left\<\begin 2 x_<1>+x_<2>+x_<3>=2 \\ x_<1>-x_<2>=-2 \\ 3 x_<1>-x_<2>+2 x_<3>=2 \end\right.$

Решение. Запишем данную систему в матричной форме:

где $A=\left(\begin 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end\right)$ — матрица системы, $X=\left(\begin x_ <1>\\ x_ <2>\\ x_ <3>\end\right)$ — столбец неизвестных, $B=\left(\begin 2 \\ -2 \\ 2 \end\right)$ — столбец правых частей. Тогда

Найдем обратную матрицу $A^-1$ к матрице $A$ с помощью союзной матрицы:

Определитель матрицы $A$

$$\Delta=\left|\begin 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+1 \cdot(-1) \cdot 1+1 \cdot 0 \cdot 3-$$ $$-3 \cdot(-1) \cdot 1-(-1) \cdot 0 \cdot 2-1 \cdot 1 \cdot 2=-4 \neq 0$$

Отсюда искомая матрица

Метод / Теорема Крамера

Теоретический материал по теме — метод Крамера.

Задание. Найти решение СЛАУ $\left\<\begin 5 x_<1>+2 x_<2>=7 \\ 2 x_<1>+x_<2>=9 \end\right.$ при помощи метода Крамера.

Решение. Вычисляем определитель матрицы системы:

$$\Delta=\left|\begin 5 & 2 \\ 2 & 1 \end\right|=5 \cdot 1-2 \cdot 2=1 \neq 0$$

Так как $\Delta \neq 0$ , то по теореме Крамера система совместна и имеет единственное решение. вычислим вспомогательные определители. Определитель $\Delta_<1>$ получим из определителя $\Delta$ заменой его первого столбца столбцом свободных коэффициентов. Будем иметь:

$$\Delta_<1>=\left|\begin 7 & 2 \\ 9 & 1 \end\right|=7-18=-11$$

Аналогично, определитель $\Delta_<2>$ получается из определителя матрицы системы $\Delta$ заменой второго столбца столбцом свободных коэффициентов:

$$\Delta_<2>=\left|\begin 5 & 7 \\ 2 & 9 \end\right|=45-14=31$$

Тогда получаем, что

Ответ. $x_<-1>=-11$, $x_ <2>= 31$

Задание. При помощи формул Крамера найти решение системы $\left\<\begin 2 x_<1>+x_<2>+x_<3>=2 \\ x_<1>-x_<2>=-2 \\ 3 x_<1>-x_<2>+2 x_<3>=2 \end\right.$

Решение. Вычисляем определитель матрицы системы:

$$\Delta=\left|\begin 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+1 \cdot(-1) \cdot 1+1 \cdot 0 \cdot 3-$$ $$-3 \cdot(-1) \cdot 1-(-1) \cdot 0 \cdot 2-1 \cdot 1 \cdot 2=-4 \neq 0$$

Так как определитель матрицы системы неравен нулю, то по теореме Крамера система совместна и имеет единственное решение. Для его нахождения вычислим следующие определители:

$$\Delta_<1>=\left|\begin 2 & 1 & 1 \\ -2 & -1 & 0 \\ 2 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+(-2) \cdot(-1) \cdot 1+$$ $$+1 \cdot 0 \cdot 2-2 \cdot(-1) \cdot 1-(-1) \cdot 0 \cdot 2-(-2) \cdot 1 \cdot 2=4$$ $$\Delta_<2>=\left|\begin 2 & 2 & 1 \\ 1 & -2 & 0 \\ 3 & 2 & 2 \end\right|=2 \cdot(-2) \cdot 2+1 \cdot 2 \cdot 1+2 \cdot 0 \cdot 3-$$ $$-3 \cdot(-2) \cdot 1-2 \cdot 0 \cdot 2-1 \cdot 2 \cdot 2=-4$$ $$\Delta_<3>=\left|\begin 2 & 1 & 2 \\ 1 & -1 & -2 \\ 3 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+1 \cdot(-1) \cdot 2+$$ $$+1 \cdot(-2) \cdot 3-3 \cdot(-1) \cdot 2-(-1) \cdot(-2) \cdot 2-1 \cdot 1 \cdot 2=-12$$

Метод Гаусса. Метод последовательного исключения неизвестных

Теоретический материал по теме — метод Гаусса.

Задание. Решить СЛАУ $\left\<\begin 2 x_<1>+x_<2>+x_<3>=2 \\ x_<1>-x_<2>=-2 \\ 3 x_<1>-x_<2>+2 x_<3>=2 \end\right.$ методом Гаусса.

Решение. Выпишем расширенную матрицу системы и при помощи элементарных преобразований над ее строками приведем эту матрицу к ступенчатому виду (прямой ход) и далее выполним обратный ход метода Гаусса (сделаем нули выше главной диагонали). Вначале поменяем первую и вторую строку, чтобы элемент $a_<1>$ равнялся 1 (это мы делаем для упрощения вычислений):

Далее делаем нули под главной диагональю в первом столбце. Для этого от второй строки отнимаем две первых, от третьей — три первых:

Все элементы третьей строки делим на два (или, что тоже самое, умножаем на $\frac<1><2>$:

Далее делаем нули во втором столбце под главной диагональю, для удобства вычислений поменяем местами вторую и третью строки, чтобы диагональный элемент равнялся 1:

От третьей строки отнимаем вторую, умноженную на 3:

Умножив третью строку на $\left(-\frac<1><2>\right)$ , получаем:

Проведем теперь обратный ход метода Гаусса (метод Гассу-Жордана), то есть сделаем нули над главной диагональю. Начнем с элементов третьего столбца. Надо обнулить элемент $$\tilde \sim\left(\begin 1 & -1 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3 \end\right)$$

Далее обнуляем недиагональные элементы второго столбца, к первой строке прибавляем вторую:

Полученной матрице соответствует система

$\left\<\begin x_<1>+0 \cdot x_<2>+0 \cdot x_<3>=-1 \\ 0 \cdot x_<1>+x_<2>+0 \cdot x_<3>=1 \\ 0 \cdot x_<1>+0 \cdot x_<2>+x_<3>=3 \end\right.$ или $\left\<\begin x_<1>=-1 \\ x_<2>=1 \\ x_<3>=3 \end\right.$

Однородные СЛАУ. Фундаментальная система решений

Теоретический материал по теме — однородные СЛАУ.

Задание. Выяснить, имеет ли однородная СЛАУ $\left\<\begin 3 x-2 y=-1 \\ x+3 y=7 \end\right.$ ненулевые решения.

Решение. Вычислим определитель матрицы системы:

$$\Delta=\left|\begin 3 & -2 \\ 1 & 3 \end\right|=9-(-2)=9+2=11 \neq 0$$

Так как определитель не равен нулю, то система имеет только нулевое решение $x=y=0$

Ответ. Система имеет только нулевое решение.

Задание. Найти общее решение и ФСР однородной системы $\Delta=\left|\begin 3 & -2 \\ 1 & 3 \end\right|=9-(-2)=9+2=11 \neq 0$

Решение. Приведем систему к ступенчатому виду с помощью метода Гаусса. Для этого записываем матрицу системы (в данном случае, так как система однородная, то ее правые части равны нулю, в этом случае столбец свободных коэффициентов можно не выписывать, так как при любых элементарных преобразованиях в правых частях будут получаться нули):

$$A=\left(\begin 1 & 1 & 0 & -3 & -1 \\ 1 & -2 & 2 & -1 & 0 \\ 4 & -2 & 6 & 3 & -4 \\ 2 & 4 & -2 & 4 & -7 \end\right)$$

с помощью элементарных преобразований приводим данную матрицу к ступенчатому виду. От второй строки отнимаем первую, от третьей — четыре первых, от четвертой — две первых:

$$A \sim\left(\begin 1 & 1 & 0 & -3 & -1 \\ 0 & -2 & 2 & 2 & 1 \\ 0 & -6 & 6 & 15 & 0 \\ 0 & 2 & -2 & 10 & -5 \end\right)$$

Обнуляем элементы второго столбца, стоящие под главной диагональю, для этого от третьей строки отнимаем три вторых, к четвертой прибавляем вторую:

$$A \sim\left(\begin 1 & 1 & 0 & -3 & -1 \\ 0 & -2 & 2 & 2 & 1 \\ 0 & 0 & 0 & 9 & -3 \\ 0 & 0 & 0 & 12 & -4 \end\right)$$

От четвертой строки отнимем $$\frac<4><3>$$ третьей и третью строку умножим на $$\frac<1><3>$$ :

$$A \sim\left(\begin 1 & 1 & 0 & -3 & -1 \\ 0 & -2 & 2 & 2 & 1 \\ 0 & 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end\right)$$

Нулевые строки можно далее не рассматривать, тогда получаем, что

$$A \sim\left(\begin 1 & 1 & 0 & -3 & -1 \\ 0 & -2 & 2 & 2 & 1 \\ 0 & 0 & 0 & 3 & -1 \end\right)$$

Далее делаем нули над главной диагональю, для этого от первой строки отнимаем третью, а ко второй строке прибавляем третью:

$$A \sim\left(\begin 1 & 1 & 0 & -6 & 0 \\ 0 & -2 & 2 & 5 & 0 \\ 0 & 0 & 0 & 3 & -1 \end\right)$$

то есть получаем систему, соответствующую данной матрице:

Или, выразив одни переменные через другие, будем иметь:

Здесь $x_<2>, x_<4>$ — независимые (или свободные) переменные (это те переменные, через которые мы выражаем остальные переменные), $x_<1>,x_<3>,x_<5>$ — зависимые (связанные) переменные (то есть те, которые выражаются через свободные). Количество свободных переменных равно разности общего количества переменных $n$ (в рассматриваемом примере $n=5$ , так как система зависит от пяти переменных) и ранга матрицы $r$ (в этом случае получили, что $r=3$ — количество ненулевых строк после приведения матрицы к ступенчатому виду): $n-r=5-3=2$

Так как ранг матрицы $r=3$ , а количество неизвестных системы $n=5$ , то тогда количество решений в ФСР $n-r=5-3-2$ (для проверки, это число должно равняться количеству свободных переменных).

Для нахождения ФСР составляем таблицу, количество столбцов которой соответствует количеству неизвестных (то есть для рассматриваемого примера равно 5), а количество строк равно количеству решений ФСР (то есть имеем две строки). В заголовке таблицы выписываются переменные, свободные переменные отмечаются стрелкой. Далее свободным переменным придаются любые, одновременно не равные нулю значений и из зависимости между свободными и связанными переменными находятся значения остальных переменных. Для рассматриваемой задачи эта зависимость имеет вид:

Тогда придавая в первом случае, например, независимым переменным значения $x_<2>=1$ , $x_<4>=0$ получаем, что $\left\<\begin x_<1>=-1+6 \cdot 0=-1 \\ x_<3>=1-\frac<5> <2>\cdot 0=1 \\ x_<5>=3 \cdot 0=0 \end\right.$ . Полученные значения записываем в первую строку таблицы. Аналогично, беря $x_<2>=0$ , $x_<4>=2$, будем иметь, что $x_<1>=12,x_<3>=-5,x_<5>=6$ , что и определяет второе решение ФСР. В итоге получаем следующую таблицу:

Эти две строчки и есть фундаментальным решением заданной однородной СЛАУ. Частное решение системы:

Общее решение является линейной комбинацией частных решений:

$$X=C_ <1>X_<1>+C_ <2>X_<2>=C_<1>\left(\begin -1 \\ 1 \\ 1 \\ 0 \\ 0 \end\right)+C_<2>\left(\begin 12 \\ 0 \\ -5 \\ 2 \\ 6 \end\right)$$

где коэффициенты $C_<1>, C_<2>$ не равны нулю одновременно. Или запишем общее решение в таком виде:

Придавая константам $C_<1>, C_<2>$ определенные значения и подставляя их в общее решение, можно будет находить частные решения однородной СЛАУ.


источники:

http://mathhelpplanet.com/static.php?p=struktura-obshchego-resheniya-sistemy-uravnenii

http://www.webmath.ru/poleznoe/formules_5_7.php