Неоднородные линейные уравнения с тремя неизвестными

Система линейных уравнений с тремя переменными

Линейное уравнение с тремя переменными и его решение

Уравнение вида ax+by+cz = d , где a, b, c, d — данные числа, называется линейным уравнением с тремя переменными x, y и z.

Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; \frac<1> <2>x-8y-5z = 7$

Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.

Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$

Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.

О тождествах – см. §3 данного справочника

Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.

Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве .

Решение системы линейных уравнений с тремя переменными методом подстановки

Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)

Например: решить систему

$$ <\left\< \begin 3x+2y-z = 8 \\ x-y+z = -2 \\ 2x-3y-5z = 1 \end \right.> \Rightarrow <\left\< \begin 3(y-z-2)+2y-z = 8 \\ x = y-z-2 \\ 2(y-z-2)-3y-5z = 1 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = y-z-2 \\ 5y-4z = 14 \\ -y-7z = 5 \end \right.> \Rightarrow <\left\< \begin x = y-z-2 \\ y = -7z-5 \\ 5(-7z-5)-4z = 14 \end \right.> \Rightarrow <\left\< \begin x = y-z-2 \\ y = -7z-5 \\ -39z = 39 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = 2-(-1)-2 = 1 \\ y = -7\cdot(-1)-5 = 2 \\ z = -1 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 2 \\ z = -1 \end \right.> $$

Решение системы линейных уравнений с тремя переменными методом Крамера

Для системы с 3-мя переменными действуем по аналогии.

Дана система 3-х линейных уравнений с 3-мя переменными:

$$ <\left\< \begin a_1 x+b_1 y+c_1 z = d_1 \\ a_2 x+b_2 y+c_2 z = d_2 \\ a_3 x+b_3 y+c_3 z = d_3 \end \right.> $$

Определим главный определитель системы:

$$ \Delta = \begin a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end $$

и вспомогательные определители :

$$ \Delta_x = \begin d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end, \Delta_y = \begin a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end, \Delta_z = \begin a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end $$

Тогда решение системы:

Соотношение значений определителей, расположения плоскостей и количества решений:

Три плоскости пересекаются в одной точке

Три плоскости параллельны

Две или три плоскости совпадают или пересекаются по прямой

Бесконечное множество решений

Осталось определить правило вычисления определителя 3-го порядка.

Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):

$$ \Delta = \begin a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end = a_1 = \begin b_2 & c_2 \\ b_3 & c_3 \end — b_1 = \begin a_2 & c_2 \\ a_3 & c_3 \end + c_1 = \begin a_2 & b_2 \\ a_3 & b_3 \end = $$

$$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$

Примеры

Пример 1. Найдите решение системы уравнений методом подстановки:

$$<\left\< \begin z = 3x+2y-13 \\ 2x-y+3(3x+2y-13) = -2 \\ x+2y-(3x+2y-13) = 9 \end \right.> \Rightarrow <\left\< \begin z = 3x+2y-13 \\ 11x+5y = 37 \\ -2x = -4 \end \right.> \Rightarrow $$

$$\Rightarrow <\left\< \begin z = 3\cdot2+2\cdot3-13 = -1 \\ y = \frac<37-11\cdot2> <5>= 3 \\ x = 2 \end \right.> \Rightarrow <\left\< \begin x = 2 \\ y = 3 \\ z = -1 \end \right.> $$

$$ <\left\< \begin x = -y-3z+6 \\ 2(-y-3z+6)-5y-z = 5\\ (-y-3z+6)+2y-5z = -11 \end \right.> \Rightarrow <\left\< \begin x = -y-3z+6 \\ -7y-7z = -7 |:(-7) \\ y-8z = -17 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = -y-3z+6 \\ y+z = 1 \\ y-8z = -17 \end \right.> \Rightarrow <\left\< \begin x = -y-3z+6 \\ 9z = 18 \\ y = 1-z \end \right.> \Rightarrow <\left\< \begin x = 1-6+6 = 1 \\ z = 2 \\ y = 1-2 = -1 \end \right.> \Rightarrow$$

Пример 2. Найдите решение системы уравнений методом Крамера:

$$ \Delta = \begin 3 & 2 & -1 \\ 2 & -1 & 3\\ 1 & 2 & -1 \end = 3 = \begin -1 & 3 \\ 2 & -1 \\ \end — 2 = \begin 2 & 3 \\ 1 & -1 \\ \end — 1 = \begin 2 & -1 \\ 1 & 2 \\ \end = $$

$$ \Delta_x = \begin 13 & 2 & -1 \\ -2 & -1 & 3 \\ 9 & 2 & -1 \\ \end = 13 = \begin -1 & 3 \\ 2 & -1 \\ \end — 2 = \begin -2 & 3 \\ 9 & -1 \\ \end — 1 = \begin -2 & -1 \\ 9 & 2 \\ \end = $$

$$ \Delta_y = \begin 3 & 13 & -1 \\ 2 & -2 & 3 \\ 1 & 9 & -1 \\ \end = 3 = \begin -2 & 3 \\ 9 & -1 \\ \end — 13 = \begin 2 & 3 \\ 1 & -1 \\ \end — 1 = \begin 2 & -2 \\ 1 & 9 \\ \end = $$

$$ \Delta_z = \begin 3 & 2 & 13 \\ 2 & -1 & -2 \\ 1 & 2 & 9 \\ \end = 3 = \begin -1 & -2 \\ 2 & 9 \\ \end — 2 = \begin 2 & -2 \\ 1 & 9 \\ \end + 13 = \begin 2 & -1 \\ 1 & 2 \\ \end = $$

$$ \Delta = \begin 1 & 1 & 3 \\ 2 & -5 & -1\\ 1 & 2 & -5 \end = 1 = \begin -5 & -1 \\ 2 & -5 \\ \end — 1 = \begin 2 & -1 \\ 1 & -5 \\ \end + 3 = \begin 2 & -5 \\ 1 & 2 \\ \end = $$

$$ \Delta_x = \begin 6 & 1 & 3 \\ 5 & -5 & -1 \\ -11 & 2 & -5 \\ \end = 6 = \begin -5 & -1 \\ 2 & -5 \\ \end — 1 = \begin 5 & -1 \\ -11 & -5 \\ \end + 3 = \begin 5 & -5 \\ -11 & 2 \\ \end = $$

$$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$

$$ \Delta_y = \begin 1 & 16 & 3 \\ 2 & 5 & -1 \\ 1 & -11 & -5 \\ \end = 1 = \begin 5 & -1 \\ -11 & -5 \\ \end — 6 = \begin 2 & -1 \\ 1 & -5 \\ \end + 3 = \begin 2 & 5 \\ 1 & -11 \\ \end = $$

$$ \Delta_z = \begin 1 & 1 & 6 \\ 2 & -5 & 5 \\ 1 & 2 & -11 \\ \end = 1 = \begin -5 & 5 \\ 2 & -11 \\ \end — 1 = \begin 2 & 5 \\ 1 & -11 \\ \end + 6 = \begin 2 & -5 \\ 1 & 2 \\ \end = $$

Пример 3*. Решите систему уравнений относительно x,y,и z:

$$ a \neq b, b \neq c, a \neq c $$

Решаем методом замены:

$$ <\left\< \begin z = -(a^3+a^2 x+ay)\\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \\ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 \end \right.> \Rightarrow <\left\< \beginz = -(a^3+a^2 x+ay)\\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \\ (c^2-a^2 )x+(c-a)y = a^3-c^3 \end \right.> $$

Т.к. $ a \neq b$ второе уравнение можно сократить на $(a-b) \neq 0$

Т.к.$ a \neq c$ третье уравнение можно сократить на $(a-с) \neq 0 $. В третьем уравнении после сокращения поменяем знаки:

Из второго уравнения получаем:

Т.к. $b \neq c$ можно сократить на $(b-c) \neq 0$:

$$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$

$$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$

Системы линейных уравнений с тремя переменными

  • Линейным уравнением называется уравнение вида:

    В этом уравнении — неизвестные, а — действительные (или комплексные) числа. При этом называются коэффициентами уравнения, а — свободным членом.

    Рассмотрим систему трех линейных уравнений с тремя неизвестными:

    Из трех способов решения этих систем: графического, способа подстановки и способа сложения остается два последних способа. Графический способ уже не проходит, так как пришлось бы находить точку пересечения трех плоскостей. А это трудно изобразить.

    Способ подстановки для трех уравнений похож на способ подстановки для двух уравнений с двумя неизвестными, только у этого способа на один шаг больше. Первое: выражаем одно из неизвестных из одного уравнения через два остальных неизвестных и подставляем это выражение в оставшиеся два уравнения. Эти оставшиеся два уравнения составляют систему из двух уравнений с двумя неизвестными. А дальше решаем эту полученную систему и находим два неизвестных, а затем, зная их, и третье неизвестное.

    Пример 1 Решить систему уравнений: способом подстановки.

    Выразим из первого уравнения через остальные неизвестные и свободный член. Найденное выражение подставим в остальные уравнения.

    Далее, оставляя первое уравнение в покое, решаем систему из двух получившихся уравнений с неизвестными и (предварительно разделив обе части второго уравнения на ).

    Получили единственное решение системы

    Рассмотрим теперь способ сложения. Так же как и для двух уравнений с двумя неизвестными, нужно при помощи сложения уравнений добиться, чтобы одно из неизвестных пропало.Приведем пример.

    Пример 2 Решить систему уравнений: способом сложения.

    Постараемся получить два уравнения с двумя неизвестными. Избавимся от неизвестной . Для этого удвоенное первое уравнение сложим почленно с удвоенным вторым уравнением, а удвоенное второе уравнение прибавим к третьему уравнению:

    Далее производим почленное сложение двух уравнений с двумя неизвестными, исключая неизвестную :

    Из последнего уравнения системы находим . Подставляя найденное значение во второе уравнение, находим . Наконец из первого уравнения находим . Итак — единственное решение системы.

    В заключении решим задачу, которая приводится к системе с тремя неизвестными.

    Задача В трех урнах — шариков. В первой урне шариков больше чем во второй на столько, сколько шариков в третьей урне. Число шариков во второй урне относится к числу шариков в третьей урне как . Сколько шариков в каждой урне?

    Обозначим число шариков в 1-й, 2-й и 3-й урнах через соответственно. Тогда первое условие задачи дает уравнение , второе условие — , а третье условие — . Запишем три полученные уравнения в систему, сделав предварительно третье уравнение линейным:

    Складывая почленно первые два уравнения находим .Решаем систему из двух оставшихся уравнений:

    Итак, в урнах соответственно и шариков.

    Длины волн инфракрасного света достаточно велики, чтобы перемещаться сквозь облака, которые в противном случае блокировали бы наш обзор. Используя большие инфракра сные телескопы, астрономы смогли заглянуть в ядро нашей галактики. Большое количество звезд излучают часть своей электромагнитной энергии в виде видимого света, крошечной части спектра, к которой чувствительны наши глаза.

    Так как длина волны коррелирует с энергией, цвет звезды говорит нам, насколько она горячая. Используя телескопы, чувствительные к различным диапазонам длин волн спектра, астрономы получают представление о широком круге объектов и явлений во вселенной.

    Пример №1 Постройте центральную симметрию тетраэдра, относительно точки O, изображенных на рисунке 3.

    Для построения такой центральной симметрии сначала проведем через все точки тетраэдра прямые, каждая из которых будет проходить через точку O. На них построим отрезки, удовлетворяющие условиям |AO|=|A?O|, |BO|=|B?O|, |CO|=|C?O|, |DO|=|D?O| Таким образом, и получим искомую симметрию (рис. 4).

    В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени.

    В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.

    Совет №1 Велосипедист, имеющий скорость 300 м/с, или идеальный газ, оказывающий давление 100 паскалей в большой тепловой машине — это странно.

  • Нужна помощь с курсовой или дипломной работой?

    Неоднородные линейные уравнения с тремя неизвестными

    Пусть задана неоднородная система линейных алгебраических уравнений размерности m × n .

    Матрица называется расширенной матрицей системы, если наряду с коэффициентами при неизвестных, она содержит столбец свободных членов. Следовательно, размерность равна m × (n+1) .

    Исследование любой системы линейных алгебраических уравнений начинается с преобразования ее расширенной матрицы методом Гаусса , который основан на следующих элементарных преобразованиях:

    – перестановка строк матрицы;

    – умножение строк матрицы на действительное отличное от руля число;

    – поэлементное сложение строк матрицы;

    – вычеркивание нулевой строки;

    – транспонирование матрицы (в этом случае преобразования производятся по столбцам).

    Элементарные преобразования приводят первоначальную систему к системе, ей эквивалентной. Системы называются эквивалентными, если они имеют одно и то же множество решений.

    Рангом матрицы называется наивысший порядок отличных от нуля ее миноров. Элементарные преобразования ранга матрицы не меняют.

    На вопрос о наличии решений у неоднородной системы линейных уравнений отвечает следующая теорема.

    Теорема 1.3 (теорема Кронекера-Капелли). Неоднородная система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу ее главной матрицы, то есть

    Обозначим количество строк, оставшихся в матрице после метода Гаусса, через r (соответственно, в системе остается r уравнений). Эти строки матрицы называются базисными.

    Если r = n , то система имеет единственное решение (является совместной определенной), ее матрица элементарными преобразованиями приводится к треугольному виду. Такую систему можно решить также методом Крамера и с помощью обратной матрицы .

    Если r n (количество переменных в системе больше количеств а уравнений), матрица элементарными преобразованиями приводится к ступенчатому виду. Такая система имеет множество решений и является совместной неопределенной. В данном случае для нахождения решений системы необходимо выполнить ряд операций.

    1. Оставить в левых частях уравнений системы r неизвестных (базисные переменные), остальные n r неизвестных перенести в правые части (свободные переменные). После разделения переменных на базисные и свободные система принимает вид:

    2. Из коэффициентов при базисных переменных составить минор (базисный минор), который должен быть отличен от нуля.

    3. Если базисный минор системы (1.10) равен нулю, то одну из базисных переменных следует заменить на свободную; полученный базисный минор снова проверить на отличие от нуля.

    4. Применяя формулы (1.6) метода Крамера, считая правые части уравнений их свободными членами, найти выражение базисных переменных через свободные в общем виде. Полученный при этом упорядоченный набор переменных системы является ее общим решением.

    5. Придавая свободным переменным в (1.10) произвольные значения, вычислить соответствующие значения базисных переменных. Получаемый при этом упорядоченный набор значений всех переменных называется частным решением системы, соответствующим данным значениям свободных переменных. Система имеет бесконечное множество частных решений.

    6. Получить базисное решение системы – частное решение, получаемое при нулевых значениях свободных переменных.

    Заметим, что количество базисных наборов переменных системы (1.10) равно числу сочетаний из n элементов по r элементов Cn r . Так как каждому базисному набору переменных соответствует свое базисное решение, следовательно, количество базисных решений у системы также равно Cn r .

    Пусть строки матрицы обозначены соответственно l 1 ; l 2 ;…; ln . Строка l называется линейной комбинацией строк l 1 ; l 2 ;…; ln матрицы, если она равна сумме произведений этих строк на произвольные действительные числа, то есть , .

    Однородная система уравнений всегда совместна, так как имеет хотя бы одно – нулевое (тривиальное) решение. Для того чтобы однородная система n линейных уравнений с n переменными имела ненулевые решения, необходимо и достаточно, чтобы ее главный определитель был равен нулю. Это означает, что ранг r ее главной матрицы меньше числа n неизвестных ( r n ) . В этом случае исследование однородной системы уравнений на общее и частные решения проводится аналогично исследованию неоднородной системы. Решения однородной системы уравнений обладают важным свойством: если известны два различных решения однородной системы линейных алгебраических уравнений, то их линейная комбинация также является решением этой системы. Нетрудно убедиться в справедливости следующей теоремы.

    Теорема 1.4. Общее решение неоднородной системы уравнений представляет собой сумму общего решения соответствующей однородной системы и некоторого частного решения неоднородной системы уравнений

    Пример 1.7. Исследовать заданную систему уравнений и найти одно частное решение:

    Решение. Выпишем расширенную матрицу системы и применим к ней элементарные преобразования:

    Так как r ( A ) =2 и , то по теореме 1.3 (Кронекера-Капелли) заданная система линейных алгебраических уравнений совместна. Количество переменных n =2 , т.е. r n , значит, система является неопределённой. Количество базисных наборов переменных системы равно . Следовательно, базисными могут быть 6 комплектов переменных: < x 1 ; x 2 >, < x 1 ; x 3 >, < x 1 ; x 4 >, < x 2 ; x 3 >, < x 2 ; x 4 >, < x 3 ; x 4 > . Рассмотрим один из них < x 1 ; x 2 > . Тогда систему, полученную в результате метода Гаусса, можно переписать в виде . Главный определитель . С помощью метода Крамера ищем общее решение системы.

    По формулам (1.6) имеем

    Данное выражение базисных переменных через свободные представляет собой общее решение системы:

    При конкретных значениях свободных переменных из общего решения получаем частное решение системы. Например, частное решение соответствует значениям свободных переменных x 3 = x 4 = 17 . При x3=0 x4=0 получаем базисное решение системы


    источники:

    http://khab.work5.ru/spravochnik/matematika/sistemy-linejnykh-uravnenij-s-tremya-peremennymi

    http://www.sites.google.com/site/vyssaamatem/kupit-sklad/i-5-issledovanie-neodnorodnyh-sistem-linejnyh-algebraiceskih-uravnenij