Неопределенные уравнения первой степени с двумя неизвестными

Математика

55. Уравнение с двумя неизвестными. Рассмотрим теперь уравнение

Оно является записью задачи: найти числовые значения для x и y, чтобы двучлен 5x + 3y оказался равным числу 18.

Мы знаем, что если бы в этом двучлене было бы лишь одно неизвестное число, то и тогда мы сумели бы решить соответствующее уравнение. Поэтому возникает соображение, что здесь одно из неизвестных является как бы лишним: если взамен неизвестного y, например, взять какое угодно число, то мы получим уравнение с одним неизвестным.

А если так, то данное уравнение должно иметь сколько угодно решений, и выясняется способ их получения: станем давать одному из неизвестных, например, y, произвольные значения и всякий раз из получаемого уравнения с 1 неизвестным станем определять другое неизвестное x. Чтобы придать этой работе больше порядка, будем результаты ее записывать в таблице.

Дадим y значение 0, т. е. примем, что y = 0 (записано в первой строчке таблицы). Тогда наше уравнение обратится в

(в таблице записываем это число во втором столбце, озаглавленном буквою x).

Итак, мы получили одно решение нашего уравнения: y = 0 и x = 3(3/5) (если эти значения подставить в наш двучлен вместо x и y, то требование, чтобы двучлен равнялся числу 18, оправдается:
3 * 3(3/5) + 3 * 0 = 18).

Дадим y значение 1, т. е. примем, что y = 1 (вторая строчка таблицы); тогда получим

откуда 5x = 18 – 3 или 5x = 15 и x = 3 (записано во 2-ой строчке). Итак, найдено второе решение уравнения y = 1 и x = 3.

Дадим y значение 7, т. е. примем, что y = 7; тогда получим уравнение 5x + 21 = 18, откуда 5x = –3 и x = –3/5 (см. 3-ю строчку таблицы).

Примем еще y = –2½; тогда 5x + 3(–2½) = 18 или 5x – 7½ = 18, откуда 5x = 25½ и x = 5(1/10) = 5,1 (см. 4-ю строчку таблицы). Эту работу можно продолжить сколь угодно далеко. Итак, одно уравнение с двумя неизвестными имеет бесконечно много решений; для их получения надо одному неизвестному давать произвольные значения и из получаемых уравнений определять всякий раз другое неизвестное .

Рассматривая предыдущую таблицу и вспоминая п. 49, мы установим: у нас y был независимым переменным, x — зависимым, или x является функцией y – a.

Мы можем несколько ускорить работу нахождения решений данного уравнения. Сочтем y за известное число (все равно, ведь, y мы всякий раз заменяли известным числом); тогда на уравнение 5x + 3y = 18 мы можем смотреть, как на уравнение с одним неизвестным x и решим это уравнение:

5x = 18 – 3y; x = (18 – 3y) / 5

Мы можем этот результат выразить словами так: мы из данного уравнения определили y через x .

Теперь по формуле (18 – 3y) / 5 мы можем легко найти сколько угодно решений, делая вычисления в уме. Примем, например, y = 2. Тогда надо (–3) умножить на (+2), получим –6; сложить (+18) и (–6) — получим +12 и разделить на 5 — получим x = +2(2/5). Еще пусть y = 10; тогда (–3) · (+10) = –30; (+18) + (–30) = –12; (–12) : (+5) = –2(2/5), т. е. x = –2(2/5) и т. д.

Возьмем еще уравнение:

Примем за независимое переменное x, а за зависимое y и определим y через x. Это можно сделать двумя приемами:

Быть может второй прием удобнее 1-го, так как его выполнение легче поддается воображению, если желательно выполнить определение y-а через x в уме.

Теперь мы можем найти сколько угодно решений нашего уравнения: 1) x = 0; y = –5(2/3); 2) x = 1; y = –4; 3) x = –1; y = –7(1/3) и т. д.

Следует приучиться быстро (в уме) определять одно из неизвестных данного уравнения с двумя неизвестными через другое. Примеры:
f55_3

Уравнения с двумя переменными (неопределенные уравнения)

Разделы: Математика

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

    повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y Z

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: где m Z.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: , где n Z.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) =>

    б) =>

    в) =>

    г) =>

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а)

    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б)

    в)

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Z
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Z
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Z
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Z
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Z
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Z
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Z
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Z

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) (1;2), (5;2), (-1;-1), (-5;-2)

    Число 3 можно разложить на множители:

    a) б) в) г)
    в) (11;12), (-11;-12), (-11;12), (11;-12)
    г) (24;23), (24;-23), (-24;-23), (-24;23)
    д) (48;0), (24;1), (24;-1)
    е) x = 3m; y = 2m, mZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Z
    з) x = 2m; y = m; x = 2m; y = -m, m Z
    и)решений нет

    4) Решить уравнения в целых числах

    (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    (-4;-1), (-2;1), (2;-1), (4;1)
    (-11;-12), (-11;12), (11;-12), (11;12)
    (-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) (-1;0)
    б)(5;0)
    в) (2;-1)
    г) (2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Алгебра. 7 класс

    Конспект урока

    Уравнения первой степени с двумя неизвестными

    Перечень рассматриваемых вопросов:

    • Решение линейных уравнений.

    • Линейное уравнение с двумя неизвестными.

    Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

    Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.

    Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.

    Свободный член – член уравнения, не содержащий неизвестного.

    Решить уравнение – значит найти все его корни или установить, что их нет.

    Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

    Линейное уравнение – уравнение вида ax = b, где x – переменная, a, b – некоторые числа.

    Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

    Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

    Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

    Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

    Теоретический материал для самостоятельного изучения.

    Мы с вами уже познакомились с линейными уравнениями первой степени, содержащими одно неизвестное.

    Однако уравнение может содержать не одно, а несколько неизвестных, обозначенных буквами. Сформулируем определение уравнения в общем виде.

    Уравнением называется равенство, в котором одно или несколько чисел, обозначенных буквами, являются неизвестными.

    Пусть, например, сказано, что сумма квадратов двух неизвестных чисел.

    x 2 + z 2 = 7x 2 + z 2 = 7

    Для уравнений с двумя неизвестными остаются справедливыми все те свойства, которые были установлены для уравнений с одним неизвестным.

    Попробуем дать определение таких уравнений.

    Уравнением первой степени с двумя неизвестными называется уравнение вида ax + bx = c, где x, y – неизвестные, a, b (коэффициенты при неизвестных), не равные оба нулю, c – любое число.

    Решим уравнение: 2x – y = 3

    Возьмём пару чисел: x = 1, y = –1.

    Подставив эти значения, получим верное равенство:

    Следовательно, эта пара чисел удовлетворяет уравнению, или она (эта пара) – решение уравнения.

    Возьмём пару чисел: x = 2, y = 4

    Следовательно, 0 ≠ 3. Это ложное равенство.

    Говорят, что пара чисел не удовлетворяет уравнению, или, что она – не решение уравнения.

    Определение. Каждая пара значений x и y, подстановка которых в уравнение с двумя неизвестными x и y, обращает его в верное равенство.

    Уравнение первой степени, содержащее два неизвестных, имеет бесконечное множество решений.

    В случае линейной зависимости, выражающейся уравнением первой степени с двумя неизвестными, графиком является прямая линия.

    Докажем, что прямая линия будет графиком и любого уравнения первой степени с двумя неизвестными.

    Возьмём уравнение: 2x – y = 4

    Уравнение представляет собой линейную зависимость вида:

    y = ax + b, графиком является прямая линия.

    Трехногие инопланетяне выгуливают на лужайке своих двуногих питомцев. Кто-то подсчитал, сколько ног ходит по лужайке. Их оказалось 15. Сколько было инопланетян и сколько их питомцев?

    Необходимо ввести две переменные: x – число инопланетян, y – число питомцев, тогда получим уравнение 3x + 2y = 15.

    Давайте же узнаем, сколько инопланетян выгуливало своих питомцев.

    далее воспользуемся методом перебора: при x = 1, y = 6. При x = 2,

    Ответ: 1 инопланетянин и 6 питомцев; 3 инопланетянина и 3 питомца.

    Подобные уравнения встречаются часто, они-то и называются неопределенными. Особенность их состоит в том, что уравнение содержит две или более переменных и требуется найти все целые или натуральные их решения. Такими уравнениями и занимался Диофант. Он изобрел большое число способов решения подобных уравнений, поэтому их часто называют диофантовыми уравнениями.

    Разбор заданий тренировочного модуля.

    Какое значение переменной удовлетворяет уравнению: 4x – 2y – 14?

    Для решения уравнения, выразим одну переменную через другую: 2y = 4x – 14,

    разделим обе части уравнения на 2:

    подставим вместо переменной x её значения:

    при x = 3 получаем:

    при x = 4 получаем:

    при x = –4 получаем:

    Следовательно, из предложенного списка, уравнению удовлетворяет только пара:

    Решите уравнение: x – 2y = 5

    Выразим переменную x через переменную y:

    подставим вместо переменной y её значения:

    при y = 1 получаем x = 5 + 2 = 7

    при y = 3 получаем x = 5 + 6 = 11

    при y = 5 получаем x = 5 + 10 = 15

    Следовательно, из предложенного списка, уравнению удовлетворяет только пара:


    источники:

    http://urok.1sept.ru/articles/417558

    http://resh.edu.ru/subject/lesson/7273/conspect/