Неопределенный интеграл определенный интеграл дифференциальные уравнения

Неопределенный интеграл определенный интеграл дифференциальные уравнения

pdf Лекция 1 . Первообразная и ее свойства. Неопределенный интеграл, его свойства, связь с дифференциалом. Таблица основных неопределенных интегралов.

pdf Лекция 2 . Интегрирование подстановкой и заменой переменной. Интегрирование по частям. Интегрирование выражений, содержащих квадратный трехчлен.

pdf Лекция 3 . Рациональные дроби. Разложение правильной рациональной дроби на сумму простейших (без д-ва). Интегрирование простейших дробей. Интегрирование правильных и неправильных рациональных дробей.

pdf Лекция 4 . Интегрирование выражений, рационально зависимых от тригонометрических функций. Интегрирование иррациональных функций. Примеры интегралов, не выражающихся через элементарные функции.

pdf Лекции 5-6 . Определенный интеграл как предел интегральных сумм. Теорема об интегрируемости кусочнонепрерывной функции (без д-ва). Геометрическая интерпретация определенного интеграла. Основные свойства определенного интеграла. Теоремы об оценке и о среднем значении.

pdf Лекция 7 . Определенный интеграл с переменным верхним пределом и теорема о его производной. Формула Ньютона-Лейбница. Вычисление определенных интегралов подстановкой и по частям. Интегрирование периодических функций, интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат.

Модуль 2 — «Приложения определенного интеграла»

pdf Лекция 8 . Несобственные интегралы по бесконечному промежутку (1-го рода). Несобственные интегралы от неограниченных функций на отрезке (2-го рода). Признаки сходимости несобственных интегралов. Абсолютная и условная сходимости. Несобственные интегралы с несколькими особенностями.

pdf Лекции 9-10 . Признаки сходимости несобственных интегралов. Абсолютная и условная сходимости. Несобственные интегралы с несколькими особенностями.

pdf Лекция 11 . Вычисление площадей плоских фигур, ограниченных кривыми, заданными в декартовых координатах, параметрическии и в полярных координатах.

pdf Лекции 12-13 . Вычисление объемов тел по площадям поперечных сечений и объемов тел вращения. Вычисление длины дуги и площади поверхности вращения. Метод Симпсона приближенного вычисления определенного интеграла.

Модуль 3 — «ОДУ первого порядка»

pdf Лекция 14 . Задачи, приводящие к дифференциальным уравнениям. Дифференциальное уравнение первого порядка, его решения. Частные и общие решения. Интегральные кривые. Понятие частной производной функции нескольких переменных. Задача Коши для дифференциального уравнения первого порядка. Теорема Коши о существовании решения дифференциального уравнения.

pdf Лекция 15 . Решение дифференциальных уравнений первого порядка: с разделяющимися переменными, однородных, линейных, Бернулли.

pdf Лекция 16 . Геометрическая интерпретация дифференциального уравнения первого порядка. Изоклины. Геометрическое решение дифференциальных уравнений с помощью изоклин. Особые точки и особые решения дифференциального уравнения первого порядка.

pdf Лекция 17 . Дифференциальные уравнения n-го порядка. Частные и общие решения. Задача Коши и ее геометрическая интерпретация (n=2). Теорема Коши о существовании и единственности решения дифференциального уравнения (без док-ва). Краевая задача. Понижение порядка некоторых типов дифференциальных уравнений n-го порядка.

Модуль 4 — «ОДУ высших порядков»

pdf Лекции 18-19 . Линейные дифференциальные уравнения n-го порядка, однородные и неоднородные. Теорема существования и единственности решения. Дифференциальный оператор L[y], его свойства. Линейное пространство решений однородного линейного дифференциального уравнения. Линейная зависимость и независимость системы функций на промежутке. Определитель Вронского (вронскиан). Теорема о вронскиане системы линейно независимых решений однородного линейного дифференциального уравнения. Теорема о структуре общего решения однородного линейного дифференциального уравнения. Размерность пространства решений однородного линейного дифференциального уравнения. Фундаментальная система решений однородного линейного дифференциального уравнения. Формула Остроградского-Лиувилля и ее следствия. Понижение порядка однородного линейного уравнения (при известном частном решении).

pdf Лекции 20-21 . Линейные однородные уравнения с постоянными коэффициентами. Характеристическое уравнение линейного однородного дифференциального уравнения. Построение общего решения по корням характеристического уравнения (вывод для n=2). Линейные неоднородные дифференциальные уравнения. Структура общего решения линейного неоднородного дифференциального уравнения. Теорема о наложении частных решений. Метод Лагранжа вариации постоянных (вывод для n=2). Структура частного решения линейного неоднородного дифференциального уравнения с постоянными коэффициентами и правой частью специального вида.

pdf Лекция 22 . Нормальные системы дифференциальных уравнений. Автономные системы дифференциальных уравнений. Фазовое пространство и фазовые траектории. Задача и теорема Коши. Частные и общее решения. Сведение дифференциального уравнения высшего порядка к нормальной системе дифференциальных уравнений первого порядка. Сведение нормальной системы к дифференциальному уравнению высшего порядка (вывод для n=2). Первые интегралы системы. Понижение порядка системы дифференциальных уравнений при помощи первых интегралов. Интегрируемые комбинации. Симметрическая форма записи нормальной автономной системы дифференциальных уравнений.

pdf Лекция 23 . Системы линейных дифференциальных уравнений первого порядка. Определитель Вронского. Фундаментальная система решений. Формула Остроградского-Лиувилля. Теоремы о структуре общего решения однородной и неоднородной систем линейных дифференциальных уравнений. Метод вариации произвольных постоянных.

pdf Лекция 24 . Однородные системы линейных дифференциальных уравнений с постоянными коэффициентами. Характеристическое уравнение системы. Построение общего решения по корням характеристического уравнения (вывод только для случая действительных и различных корней).

Калькулятор Интегралов. Решение Определенных и Неопределенных Интегралов (первообразных)

Верхний предел
Нижний предел

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Первообразная

Определение. Непрерывная функция F(x) называется первообразной функции f(x), если на промежутке X, если для каждого .

Операция нахождения первообразной функции f(x), называется интегрированием.

Неопределенный интеграл

Неопределённый интеграл-это совокупность всех первообразных функции f(x). В общем случае, нахождение неопределённого интеграла выглядит следующим образом:

,

где f(x)-подынтегральная функция, F(x)-первообразная функция функции f(x), dx-дифференциал, C-константа интегрирования. Неопределённый интеграл представляет собой, как бы, «пучок» первообразных, из-за наличия постоянной интегрирования.

Дифференциал-произвольное, бесконечно малое приращение переменной величины.

Свойства неопределённого интеграла

Таблица основных неопределённых интегралов

В виде

,

где f(x)-подынтегральная функция, F(x)-первообразная функция функции f(x), dx-дифференциал, C-константа интегрирования.

Определённый интеграл

Определенный интеграл Приращение одной из первообразных функции f(x) на отрезке [a;b].

Общий вид определённого интеграла:

где f(x)–подынтегральная функция, a и b-пределы интегрирования, dx-дифференциал

Свойства определённого интеграла: см. св-ва определённого интеграла.

Определённый интеграл вычисляется по формуле Ньютона –Лейбница:

Применение определённого интеграла:

1. Нахождение площади криволинейной трапеции

2. Нахождение величины скорости v по заданному закону ускорения a(t) за промежуток времени [t1;t2], т.е

Пример: Точка движется по закону ускорения a(t)=t+1. Найти величину ее скорости за промежуток времени [2;4] секунд.

Решение:

3. Нахождение пути S по закону изменения скорости v(t) за промежуток времени [t1;t2], т.е.

Пример: Найти путь, который проделала материальная точка за промежуток времени [2;4], двигаясь со скоростью, которая изменялась по закону: v(t)=2t+2.

Решение:

Стоит отметить, что, на сегодняшний день, интегральное и дифференциальное исчисление занимают лидирующие позиции в математике. Советую вам ознакомиться, более подробно, с широким применением интегралов в естествознании.


источники:

http://mathdf.com/int/ru/

http://ya-znau.ru/znaniya/zn/116